Cho ΔABC có góc A = 90° và đường phân giác BH (H ∈ AC). Kẻ HM ⊥ BC (H ∈ BC). Gọi N là giao điểm của AB và MH, chứng minh:
a) ΔABH = ΔMBH
b) BH là đường trung trực của AM
c) AM // CN
d) BH ⊥ CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tam giác AHB và tam giác MBH có:BH chung,góc BAH =góc BMH=90*,ABH=MBH=> hai tam giác = nhau (ch-gn)
b)tam giác AHB và tam giác MBH=>BA=BM=>tam giác BAM cân tại B => tam giác BAM cân=>BH là pg và cũng là đường cao => BH là đường trung trực của đoạn thẳng AM
c) tam giác BCN có NM,AC là đường cao mà NM cắt AC tại H => H là trung tâm=>BH vuông góc NC,BH vuông góc với AM =>AM//CN
MÌNH KO BIẾT LÀM d NHÉ
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
góc ABH=góc MBH
=>ΔBAH=ΔBMH
b: BA=BM
HA=HM
=>BH là trung trực của AM
=>BH vuông góc AM
c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBN chung
=>ΔMBN=ΔABC
=>BN=BC
Xét ΔBNC có BA/BN=BM/BC
nên AM//NC
a) .
Xét tam giác ABH và tam giác MBH có :
AB = BH(BE là tia phân giác)
góc ABH = góc HBM(BE là tia phân giác)
BH cạnh chung
đo đó : tam giác ABH = tam giác MBH (c.g c) (1)
b)
Từ (1) suy ra:
tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực của đoạn thẳng AM
a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)
a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
góc ABH=góc MBH
=>ΔBAH=ΔBMH
b: Xét ΔHAN vuông tại A và ΔHMC vuông tại M có
HA=HM
góc AHN=góc MHC
=>ΔHAN=ΔHMC
c: BN=BC
HN=HC
=>BH là trung trực của NC
=>BH vuông góc NC
c: BH là trung trực của NC
K là trung điểm của NC
=>B,H,K thẳng hàng
a, Xét tam giác vuông ABH và tam giác vuông MBH có
góc MBH = góc ABH (do BH là phân giác góc B)
HB chung
=> Tam giác vuông ABH = tam giác vuông MBH ( ch - gn )
b, Từ câu a, sẽ có HM = HA ( cạnh tương ứng)
=> H thuộc trung trực của AM(1)
Ta còn có BM = BA ( cạnh tương ứng )
=> B thuộc trung trực của AM (2)
Từ (1) và (2) suy ra BH là trung trực của AM
c, Xét tam giác BCN
có NM vuông góc với BC => NM là đường cao ứng với cạnh BC
có CA vuông góc với BN => CA là đường cao ứng với cạnh BN
mà chúng giao nhau ở H nên H là trực tâm
nên BH là đường cao ứng với cạnh CN
=> BH vuông góc với CN mà BH còn vuông góc với AM (BH là trung trực của AM)
=> CN song song với AM
d, Từ câu trên ta đã chứng minh BH vuông góc vói CN