Có ai làm giúp bài này vs :
Cho tam giác ABC vuông tại A . Biết AB = 9cm , AC = 12cm . Tia phân giác của BÂC cắt cạnh BC tại điểm D . Từ D kẻ đường thẳng vuông góc với AC , đường thẳng này cắt AC tại E .
a ) Chứng minh : Tam giác CED đồng dạng với tam giác CAB
b ) Tính tỉ số \(\frac{CD}{DE}\)?
c ) Tính diện tích tam giác ABD ?
Bạn tự vẽ hình nka !!!
A) XÉT \(\Delta CED\) và \(\Delta CAB\) có :
\(\widehat{DEC}=\widehat{BAC}=90\)độ ; \(\widehat{BCA}\) chung
\(\Leftrightarrow\Delta CED\infty\Delta CAB\left(g.g\right)\)
B) Theo định lí Py - ta - go trong tam giác ABC vuông tại A ta có :
\(BC^2=AB^2+AC^2=9^2+12^2=225\)\(\Leftrightarrow BC=\sqrt{225}=15\left(cm\right)\)
TA CÓ : \(\frac{CD}{DE}=\frac{BC}{AB}=\frac{15}{9}=\frac{5}{3}\)
C) Vẽ đường cao DH vuông góc với AB ở H
Do AD là phân giác của góc A , ta có tỉ lệ : \(\frac{BD}{CD}=\frac{AB}{AC}\)
Áp dụng tính chất tỉ lệ thức , ta có : \(\frac{BD}{DC+BD}=\frac{AB}{AC+AB}\)\(\Leftrightarrow\frac{BD}{15}=\frac{9}{21}\)\(\Leftrightarrow BD=\frac{45}{7}\left(cm\right)\)
Xét \(\Delta BHD\)và \(\Delta BAC\)có :
\(\widehat{BHD}=\widehat{BAC}=90\)độ ; \(\widehat{B}\)chung
\(\Leftrightarrow\Delta BHD\infty\Delta BAC\left(g.g\right)\)
ta có tỉ lệ : \(\frac{BH}{AB}=\frac{BD}{BC}=\frac{HD}{AC}\)\(\Leftrightarrow HD=\frac{BD\cdot AC}{BC}=\frac{\frac{45}{7}\cdot12}{15}=\frac{36}{7}\left(cm\right)\)
VẬY DIỆN TÍCH TAM GIÁC ABD LÀ : \(S_{ABD}=\frac{1}{2}\cdot DH\cdot AB=\frac{1}{2}\cdot\frac{36}{7}\cdot9=\frac{162}{7}\left(cm^2\right)\)
TK MK NKA !!!
Em nghĩ là 162/7 cm^2