K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

số chình phương?

7 tháng 5 2017

là bình phương 1 phân số nhé

23 tháng 1 2020

Giả sử: \(\frac{x-17}{x-9}=\frac{a^2}{b^2}\left(a,b\in N,b\ne0\right)\)

Xét \(a=0\Rightarrow x=17\)

Xét \(a\ne0\)

Giả sử: \(\left(a,b\right)=1\)

\(\Rightarrow\hept{\begin{cases}x-17=a^2k\\x-9=b^2k\end{cases}\Rightarrow k\left(b-a\right)\left(a+b\right)=8}\)

Đến đây bạn làm tiếp nhé!

Đáp số: \(x=0;8;17;18\)

Chúc bạn học tốt !!!

23 tháng 11 2018

Ơ lấy trong Toán tuổi thơ à? Để tui gửi về tòa soạn trước rồi t trả lời cho =)))

23 tháng 11 2018

ĐK: \(\frac{x-1}{9x+7}\ge0\) (do bình phương của một số \(\ge0\))

Đặt \(\sqrt{\frac{x-1}{9x+7}}=\frac{a}{b}\) (\(\frac{a}{b}\ge0\)\(\frac{x-1}{9x+7}=\frac{a^2}{b^2}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=a^2\\9x+7=b^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=a^2+1\\9x=b^2-7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=a^2+1\\x=\frac{b^2-7}{9}\end{cases}}\)(1). Mà x nguyên nên \(a^2+1\);\(b^2-7\in Z\)

+Để \(a^2+1\) nguyên thì a thuộc Z (2)

+Để \(\frac{b^2-7}{9}\) nguyên thì \(b^2-7⋮9\Leftrightarrow b^2-7\in B\left(9\right)\Leftrightarrow b^2=B\left(9\right)+7\Leftrightarrow b=\sqrt{B\left(9\right)+7}\) (3)

Thay (2) và (3) vào (1),ta có: \(\hept{\begin{cases}x=a^2+1\\x=\frac{b^2-7}{9}=\frac{B\left(9\right)+7-7}{9}=\frac{B\left(9\right)}{9}\end{cases}}\)

Vậy ....

13 tháng 5 2016

Để x-9/x+2 là số nguyên thì x-9 \(⋮\)x+2

<=>x+2-11\(⋮\)x+2

Mà x+2 \(⋮\)x+2=>11\(⋮\)x+2

=>x+2EƯ(11)={-1;1;-11;11}

=>xE{-3;-1;-13;9}

13 tháng 5 2016

Để x-9/x+2 có giá trị là một số nguyên thì ta có:

     x-9 chia hết cho x+2

=> x+2-11 chia hết cho x+2

Mà x+2 chia hết cho x+2 => 11 chia hết cho x+2

                                           => x+2 ϵ Ư(11) = {-1;1;-11;11}

                                           =>    x ϵ { -3;-1;-13;9 }

 

10 tháng 7 2017

a) Ta có : xy - x - y = 2

=> xy - x = 2 + y

=> x(y - 1) = y + 2

=> x = \(\frac{y+2}{y-1}\)

Mà x là số nguyên nên : \(\frac{y+2}{y-1}\)cũng là số nguyên 

Suy ra : y + 2 chia hết cho y - 1 

=> y - 1 + 3 chia hết cho y - 1 

=> 3 chia hết cho y - 1 

=> y - 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng : 

y - 1-3-113
y-2024
x = \(\frac{y+2}{y-1}\)0-242
21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản