K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2023

a.

Do A là điểm chính giữa cung BC \(\Rightarrow AB=AC\Rightarrow\Delta ABC\) vuông cân tại A

\(\Rightarrow AO\perp BC\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AO.BC=\dfrac{1}{2}R.2R=R^2\)

b.

Tứ giác ABCM nội tiếp (O) \(\Rightarrow\widehat{ABC}+\widehat{AMC}=180^0\) (1)

Lại có \(\widehat{ACD}+\widehat{ACB}=180^0\) (2)

Mà \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) vuông cân tại A) (3)

(1);(2);(3) \(\Rightarrow\widehat{AMC}=\widehat{ACD}\)

Xét hai tam giác  AMC và ACD có:

\(\left\{{}\begin{matrix}\widehat{CAD}\text{ chung}\\\widehat{AMC}=\widehat{ACD}\end{matrix}\right.\) \(\Rightarrow\Delta AMC\sim\Delta ACD\left(g.g\right)\) (4)

\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AC}{AD}\Rightarrow AM.AD=AC^2\)

Do \(\Delta ABC\) vuông cân \(\Rightarrow AC^2=\dfrac{1}{2}BC^2=2R^2\Rightarrow AM.AD=2R^2\) không đổi

Gọi G là tâm đường tròn ngoại tiếp MCD

Từ (4) \(\Rightarrow\widehat{ADC}=\widehat{MCA}\)

Mà \(\widehat{ADC}=\dfrac{1}{2}\widehat{MGC}\) (góc nội tiếp và góc ở tâm cùng chắn cung CM)

\(\Rightarrow\widehat{ACG}=\widehat{MCA}+\widehat{MCG}=\dfrac{1}{2}\widehat{MGC}+\dfrac{1}{2}\left(180^0-\widehat{MGC}\right)=90^0\)

\(\Rightarrow AC\perp GC\)

Hay tâm G của đường tròn ngoại tiếp MCD luôn nằm trên đường thẳng cố định đi qua C và vuông góc AC

NV
7 tháng 5 2023

loading...

20 tháng 5 2021

Không có mô tả.

3 tháng 9 2016

Vậy đề yêu cầu làm gì ??

a: \(S_{q\left(OAC\right)}=\dfrac{pi\cdot R^2\cdot90}{360}=pi\cdot\dfrac{R^2}{4}\)

\(S_{OAC}=\dfrac{1}{2}\cdot OA\cdot OC=\dfrac{1}{2}\cdot R^2\)

=>\(S_{vp}=pi\cdot\dfrac{R^2}{4}-\dfrac{1}{2}\cdot R^2\)

b: SỬa đề: AM cắt OC tại I

góc AMB=1/2*180=90 độ

góc IOB+gócIMB=180 độ

=>IOBM nội tiếp

 

1: 

a: M là điểm chính giữa của cung AB

=>OM vuông góc AB

góc APB=1/2*sđ cung AB=90 độ

góc COB+góc CPB=180 độ

=>COBP nội tiếp

Xet ΔAOC vuông tại O và ΔAPB vuông tại P có

góc CAO chung

=>ΔAOC đồng dạng với ΔAPB

=>AO/AP=AC/AB

=>AP*AC=AO*AB=2R^2 ko đổi

b: Xét ΔBOD vuông tại O và ΔCOA vuông tại O có

góc BDO=góc CAO

=>ΔBOD đồng dạng với ΔCOA

c: góc OPI=90 độ

=>góc IPC+góc OPC=90 độ

=>góc IPC+góc PAB=90 độ

=>góc IPC=góc ACO=góc ICP

=>IC=IP và góc IDP=góc IPD

=>IC=IP=ID

=>IC=ID