K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng vơi ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

b: \(AB=\sqrt{9\cdot25}=15\left(cm\right);AC=\sqrt{16\cdot25}=20\left(cm\right)\)

BE là phân giác

=>AE/AB=EC/CB

=>AE/3=CE/5=20/8=2,5

=>AE=7,5cm; CE=12,5cm

c: BM/MA*AE/EC*CN/BN

=BE/EA*AE/EC*EC/EB

=1

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đòng dạng với ΔHAC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC

=>HA^2=HB*HC

c: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=căn 16*25=20(cm)

BE là phân giác

=>AE/AB=CE/BC

=>AE/3=CE/5=(AE+CE)/(3+5)=20/8=2,5

=>AE=7,5cm; CE=12,5cm

16 tháng 4 2018

a) Xét tam giác ABC và tam giác HBA có:

\(\widehat{BAC}=\widehat{BHA}=90^o\)

Góc B chung

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)

b) 

Xét tam giác ABC và tam giác HAC có:

\(\widehat{BAC}=\widehat{AHC}=90^o\)

Góc C chung

\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)

c) Từ câu a và b ta có : \(\Delta HBA\sim\Delta HAC\)

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow HA^2=HB.HC=9.16=144\)

\(\Rightarrow HA=12\left(cm\right)\)

Khi đó áp dụng định lý Pi-ta-go ta có:

\(AB^2=BH^2+AH^2=9^2+12^2\Rightarrow AB=15\left(cm\right)\)

\(AC^2=CH^2+AH^2=16^2+12^2\Rightarrow AC=20\left(cm\right)\)

BC = BH + HC = 9 + 16 = 25 (cm)

Áp dụng tính chất tia phân giác trong tam giác ta có:

\(\frac{AE}{EC}=\frac{AB}{BC}=\frac{15}{25}=\frac{3}{5}\)

\(\Rightarrow AE=\frac{3}{8}\times20=7,5\left(cm\right)\)

\(\Rightarrow EC=20-7,5=12,5\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

Do đó: ΔHBA\(\sim\)ΔHAC

Suy ra: HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

6 tháng 4 2018

a) Xét tam giác ABC và tam giác HAC có :

\(\widehat{BAC}=\widehat{AHC}\left(=90^o\right)\)

Chung \(\widehat{ACB}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g) (đpcm)

b) Xét tam giác ABC và tam giác HBA có :

\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)

Chung \(\widehat{ABC}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA (g-g)

Mà tam giác ABC đồng dạng với tam giác HAC ( câu a )

Suy ra tam giác HBA đồng dạng với tam giác HAC

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Leftrightarrow HA^2=HB\times HC\left(đpcm\right)\)

c) Do \(AH^2=BH\times HC\)

\(\Leftrightarrow AH^2=9\times16\)

\(\Leftrightarrow AH^2=144\)

\(\Leftrightarrow AH=\sqrt{144}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Py-ta-go cho tam giác AHC vuông tại H ta được :

\(AH^2+HC^2=AC^2\)

\(\Leftrightarrow12^2+16^2=AC^2\)

\(\Leftrightarrow AC^2=400\)

\(\Leftrightarrow AC=\sqrt{400}\)

\(\Leftrightarrow AC=20\left(cm\right)\)

  Ta có : \(BC=BH+HC=9+16=25\left(cm\right)\)

Do BE là phân giác của \(\widehat{ABC}\)

\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{9+25}=\frac{AC}{34}=\frac{20}{34}=\frac{10}{17}\)

\(\Rightarrow\frac{EC}{BC}=\frac{10}{17}\Leftrightarrow\frac{EC}{25}=\frac{10}{17}\Leftrightarrow EC=\frac{250}{17}\left(cm\right)\)

Lại có : \(AE=AC-EC=20-\frac{250}{17}=\frac{90}{17}\left(cm\right)\)

Vậy độ dài đoạn thẳng EC là \(\frac{250}{17}\) cm ; AE là \(\frac{90}{17}\) cm

26 tháng 4 2016

a) xét tam giác ABC và HAC có:

góc CAB=gócCHA=90độ

chung ACH

suy ra tam giác ABCđồng dạng với tam giác HAC

=> \(\frac{BC}{AC}=\frac{AC}{CH}=>AC^2=BC\cdot CH\)

b) vì tam giác ABC vuông tại A,áp dụng định lý pitago bạn sẽ tính được BC

thay vào \(\frac{BC}{AC}=\frac{AC}{CH}\)

bạn sẽ tính được CH,sau đó tương tự áp dụng pitago cho các tam giác còn lai là ra nhé

kết quả:HC=9,6;AH=7,2;BH=5,4

11 tháng 4 2018

câu d dùng tính chất đường phân giác trong tam giác là ra  mà em!

EM là phân giác của tam giác ABE=>BM/AM=BE/AE

EN là phân giác của tam giác BEC =>CN/BN=EC/BE

=> BM/AM * CN/BN*AE/EC= BE/AE * EC/BE*AE/EC=1