chung minh x^2+x+1>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy x = 1 hoặc x = -1
Bài 2:
\(2x-2x^2-1=-2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-2\left(x^2-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\)
\(\Rightarrowđpcm\)
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\)
\(\Rightarrow xy+yz+zx=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(x^2+2y^2-2xy+x-2y+1=0\)
\(\Leftrightarrow x^2-2xy+y^2+x-y+\dfrac{1}{4}+y^2-y+\dfrac{1}{4}+\dfrac{1}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2.\dfrac{1}{2}\left(x-y\right)+\left(\dfrac{1}{2}\right)^2+y^2-2.\dfrac{1}{2}y+\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}=0\)
\(\Leftrightarrow\left(x-y+\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{2}=0\)
Mà \(VT\ge\dfrac{1}{2}>0\Rightarrow VT>VP\)
\(\Rightarrow\)PT vô nghiệm(đpcm)
\(x^2+x+1\)
\(=x^2+2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
Vậy \(x^2+x+1>0\) với mọi x (đpcm)
Chúc bạn học tốt ^^
bien doi ve trai;
= (x + 1/2)2 +1- 1/4
= (x+1/2)2 +3/4 luon lon hon 0 voi moi x(dpcm)
nêu IQ>100 rat de hiu,
mjk trả lời mà bạn ko đúng cái nào
x^2+x+1
=x2+2x.1/2+1/4+3/4
=(x+1/2)2+3/4>0 với mọi x (vì (x+1/2)2\(\ge\)0)
vậy x^2+x+1>0