\(B=\dfrac{2021\times13+2007+2020\times2007}{2020+2020\times520+1500\times2020}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2018\times2020+2020\times2022}{2020\times4040}\\ =\dfrac{2020\times\left(2018+2022\right)}{2020\times4040}\\ =\dfrac{2020\times4040}{2020\times4040}\\ =1\)
\(\dfrac{2018\times2020+2020\times2022}{2020\times4040}\)
\(=\dfrac{2020\times\left(2018+2022\right)}{2020\times4040}\)
\(=\dfrac{2018+2022}{4040}\)
\(=\dfrac{4040}{4040}\)
\(=1\)
B=2021 x 13 + 2009 + 2020 x 2007/2020 + 2020 x520x2020
B=2021 x 13 +2009+2020/1x2007/2020 +2020x520x2020
B=26273+2009+20201/1x2007/20201+2121808000
B=28282+2007+2121808000
B=2121838289
c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)
\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)
100^100+1<100^101+1
=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)
=>100C>100D
=>C>D
b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)
\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)
2020^2022+1>2020^2021+1(Do 2022>2021)
=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)
=>2020E<2020F
=>E<F
Giải:
Ta có: N=2019+2020/2020+2021
=>N=2019/2020+2021 + 2020/2020+2021
Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021
=>M>N
Vậy ...
Chúc bạn học tốt!
Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)
\(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)
\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)
\(\Rightarrow M>N\)
\(B=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=-\dfrac{2}{3}\)
\(B=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=\dfrac{1}{3}-\dfrac{3}{3}=-\dfrac{2}{3}\)
Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$
$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$
$> 4+0+0+0+0=4$
B = \(\dfrac{2021\times13+2007+2020\times2007}{2020+2020\times520+1500\times2020}\)
B = \(\dfrac{2021\times13+2007\times\left(1+2020\right)}{2020\times\left(1+520+1500\right)}\)
B = \(\dfrac{2021\times13+2007\times2021}{2020\times2021}\)
B = \(\dfrac{2021\times\left(13+2007\right)}{2021\times2020}\)
B = \(\dfrac{2021\times2020}{2021\times2020}\)
B = 1