Cho 2 đường tròn \(\left(O_1\right)\) và \(\left(O_2\right)\)cắt nhau tại A và B, tiếp tuyến chung với 2 đường tròn \(\left(O_1\right)\)và \(\left(O_2\right)\)về phía nửa mặt phẳng bờ \(O_1;O_2\) chưa điểm B, có tiếp điểm thứ tự là E , F. Qua A kẻ cát tuyến song song với EF và cắt \(\left(O_1\right),\left(O_2\right)\)theo thứ tự tại C và D. Đường thẳng CE và đường thẳng DF cắt nhau tại I .
CMR :
a ) IA vuông góc với CD
b) Tứ giác IEBF nội tiếp
c) Đường thẳng AB đi qua trung điểm của EF
a) kéo dài O1E,O2F cắt CD ở M và N
b) góc BFI + góc BEI =180
c) gọi AB cắt EF ở K
bằng đồng dạng ta chứng minh được KE=KF=KB.KA(đpcm)