Lớp 7A có 20 bạn nam và 20 bạn nữ. Giáo viên gọi ngẫu nhiên 1 bạn lên bảng để kiểm tra bài tập. Xác suất để cô gọi được bạn nữ là:
A. \(\dfrac{1}{6}\) B. 1 C .\(\dfrac{1}{3}\) D. \(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai biến cố A và B đồng khả năng vì đều có 5 khả năng cô gọi trúng bạn nam và 5 khả năng cô gọi trúng bạn nữ
b) Vì có 2 biến cố đồng khả năng và luôn xảy ra 1 trong 2 biến cố A và B nên xác suất của mỗi biến cố đó là \(\dfrac{1}{2}\)
Cách chọn 2 bạn từ 7 bạn là \(C_{7}^2 \Rightarrow n\left( \Omega \right) = C_{7}^2 = 21\)
Gọi A là biến cố: “Hai bạn được chọn có một bạn nam và một bạn nữ”.
Cách chọn một bạn nam là: 3 cách chọn
Cách chọn một bạn nữ là: 4 cách chọn
Theo quy tắc nhân ta có \(n\left( A \right) = 3.4 = 12\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{21}} = \frac{4}{7}\).
Chọn A
Không gian mẫu là số cách gọi ngẫu nhiên 2 nam, 2 nữ từ 46 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 4 học sinh (2 nam, 2 nữ) được gọi lên đều không chuẩn bị bài tập về nhà, trong đó có Bình và Mai . Ta mô tả khả năng thuận lợi cho biến cố A như sau:
● Gọi Bình và Mai lên bảng, có 1 cách.
● Tiếp theo gọi 1 bạn nam từ 6 bạn không làm bài tập về nhà còn lại và 1 bạn nữ từ 3 bạn không làm bài tập về nhà còn lại, có cách.
Suy ra số phần tử của biến cố A là .
Vậy xác suất cần tính .
Chon C.
Đáp án B
Có các trường hợp sau:
+ 1 nam, 3 nữ, suy ra có C 18 1 C 17 3 cách gọi
+ 2 nam, 2 nữ, suy ra có C 18 2 C 17 2 cách gọi
+ 3 nam, 1 nữ, suy ra có C 18 3 C 17 1 cách gọi
Suy ra xác suất sẽ bằng
Đáp án B
Có các trường hợp sau:
+ 1 nam, 3 nữ, suy ra có C 18 1 C 17 3 cách gọi
+ 2 nam, 2 nữ, suy ra có C 18 2 C 17 2 cách gọi
+ 3 nam, 1 nữ, suy ra có C 18 3 C 17 1 cách gọi
Suy ra xác suất sẽ bằng
Đáp án B
Phương pháp: Xác suất : P ( A ) = n ( A ) n ( Ω )
Cách giải:
Số phần tử của không gian mẫu : n ( Ω ) = C 15 + 10 4 = C 25 4
Gọi A là biến cố : “4 học sinh được gọi đó cả nam lẫn nữ”
Khi đó :
Xác suất cần tìm:
Chọn ngẫu nhiên có 40 cách chọn
Chọn 1 bạn nữa lên bảng có 20 cách chọn
=> Xác xuất \(\dfrac{20}{40}=\dfrac{1}{2}=>D\)