K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nó vuông cân á bạn

15 tháng 6 2018

Gọi I là giao điểm 

Lấy điểm M bất kì trong tứ giác ABCD

Ta có: \(MA+MC\ge AC\)

\(MB+MD\ge BD\)

nên \(MA+MB+MC+MD\ge AC+BD\)( có giá trị không đổi )

Để MA + MB + MC + MD đạt giá trị nhỏ nhất thì: 

\(MA+MB+MC+MD=AC+BD\Leftrightarrow"="MA+MC\ge AC\)\(\Rightarrow M\in AC\)

Tương tự xảy ra \("="\Leftrightarrow MB+MD\ge BD\Rightarrow M\in BD\)

Nên M trùng O

Vậy......................

15 tháng 6 2018

ta có AM+MC> AC(bđt tam giác)

(dấu = xảy ra khi M thuộc AC)      (1)

ta lại có BM+MD> BD  (bđt tam giác)

(dấu = xảy ra khi M thuộc BD)           (2)

lấy (1)+(2) suy ra: AM+MC+BM+MD> AC+BD

và đạt giá trị nhỏ nhất khi :AM+MC+BM+MD=AC+BD

vậy M nằm ở giao điểm AC và BD

21 tháng 10 2019

A B C M N K

Từ M kẻ MK vuông góc với BC; gọi a là độ dài cạnh tam giác; CM =x

ta có MN2 =MK2 +KN2 = (CN-CK)2 +KM2

CK = MCcos60 = x/2; CN = AM = AC -CM = a-x; KM = CMsin60 = \(\frac{x\sqrt{3}}{2}\)

=> MN2 =(a-x -\(\frac{x}{2}\))2 + \(\frac{3}{4}x^2=\)\(a^2-3ax+3x^2=3\left(x-\frac{a}{2}\right)^2+\frac{a^2}{4}\ge\frac{a^2}{4}\)

=> MN\(\ge\frac{a}{2}\)

MN nhỏ nhất khi x= CM = \(\frac{a}{2}\) hay M là trung điểm của AC

với a=2014 thì MN nhỏ nhất là \(\frac{a}{2}=\frac{2014}{2}=1007\)

15 tháng 7 2018

Ta có : \(MA+MC\ge AC\)

Dấu " = " xảy ra khi M thuộc AC

Ta có :\(MB+MD\ge BD\)

\(\Rightarrow MA+MC+MB+MD\ge AC+BD\)

Dấu " = " xảy ra khi M là giao điểm của AC, BD

Vậy khi M là giao điểm của AC và BD thì MA+MB+MC+MD nhỏ nhất

15 tháng 7 2018

Theo đề bài ta có :\(MA+MC\ge AC\)

Dấu " = " xảy ra khi và chỉ khi \(M\in AC\)

Theo đề bài có : \(MB+MD\ge BD\)

Dấu " =" xảy ra khi và chỉ khi \(M\in BD\)

\(\Rightarrow MA+MB+MC+MD\ge AC+BD\)

Vậy \(MA+MB+MC+MD\)nhỏ nhất sẽ bằng \(AC+BD\)

\(\Leftrightarrow\)M là giao điểm của 2 đường chéo AC và BD .

11 tháng 4 2015

điểm m là giao điểm của 3 đường phân giác

 

13 tháng 6 2017

A D C B M

Ta có: \(MA+MC\ge AC\)

Dấu " = " xảy ra khi M thuộc AC

Ta có: \(MB+MD\ge BD\)

Dấu " = " xảy ra khi M thuộc BC

=> \(MA+MC+MB+MD\ge AC+BD\)

Dấu " = " xảy ra khi M là giao điểm của AC, BD

Vậy khi M là giao điểm của AC và BD thì MA+MB+MC+MD nhỏ nhất

13 tháng 6 2017

cám ơn bạn nhìu nha