K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

c: Xét ΔAMC vuông tại M có MD vuông góc AC

nên AD*AC=AM^2

ΔANB vuông tại N có NE vuông góc AB

nên AE*AB=AN^2

=>AM=AN

23 tháng 3 2016

mình làm được câu a, b, c rồi các bạn giúp mình câu d nhé thank

4 tháng 5 2022

làm hộ với

 

17 tháng 5 2023

mình cần gâps huhu

 

2 tháng 3 2022

a, Xét tam giác BAD và tam giác CAE có 

^A _ chung 

^BDA = ^CEA = 900

Vậy tam giác BAD ~ tam giác CAE (g.g) 

b, => ^ABD = ^ACE (2 góc tương ứng) 

Xét tam giác HBE và tam giác HCD ta có 

^HBE = ^HCE (cmt) 

^BHE = ^CHD (đ.đ) 

Vậy tam giác HBE ~ tam giác HCD (g.g) 

\(\dfrac{HB}{HC}=\dfrac{HE}{HD}\Rightarrow HD.HB=HE.HC\)

c, xem lại cách viết cạnh tương ứng tam giác bạn nhé 

Xét tam giác BHC và tam giác EHD ta có 

\(\dfrac{BH}{EH}=\dfrac{HC}{HD}\)(tỉ lệ thức của tỉ số đồng dạng trên) 

^BHC = ^EHD (đ.đ)

Vậy tam giác BHC ~ tam giác EHD (c.g.c) 

 

 

23 tháng 4 2016

AI bit chi dum di

23 tháng 4 2016

vẽ hình

a xét tam giác ABD và tam giác ACE có :

chung góc BAC

góc BDA = góc CEA = 90 độ

=> tam giác ABD đồng dạng tam giác ACE (g.g)

b, xét tam giác EHB và tam giác DHC có

góc BDC = góc CFB = 90 độ 

góc BHF = góc DHC ( đối đỉnh )

=> tam giác EHB đồng dạng với tam giác DHC (g.g)

=> \(\frac{HB}{HC}=\frac{HE}{HD}\) 

=> HD . HB = HE . HC ( đpcm )

c, vì tam giác ABD đồng dạng với tam giác ACE ( câu a)

=> \(\frac{AB}{AC}=\frac{AD}{AE}\)  => \(\frac{AE}{AC}=\frac{AD}{AB}\)

xét tam giác ADE và tam giác ABC có 

chung góc BAC

\(\frac{AE}{AC}=\frac{AD}{AB}\) 

=> tam giác ADE đồng dạng với tam giác ABC ( c.g.c) 

=> góc ADE = góc ABC ( đpcm)

2 tháng 4 2018

a)  Xét  \(\Delta ADB\) và    \(\Delta AEC\)  co:

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\widehat{A}\)   CHUNG

Suy ra:   \(\Delta ADB~\Delta AEC\)

b)  Xét   \(\Delta EHB\)  và     \(\Delta DHC\) có:

\(\widehat{HEB}=\widehat{HDC}=90^0\)

\(\widehat{EHB}=\widehat{DHC}\)  (đối đỉnh)

suy ra:   \(\Delta EHB~\Delta DHC\)

\(\Rightarrow\)\(\frac{EH}{DH}=\frac{HB}{HC}\)

\(\Rightarrow\)\(HB.DH=HC.HE\)