K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Đáp án cần chọn là: 

x 5 = 3 y ⇒ x . y = 5.3 = 15

Mà   15 = 5.3 = 15.1 = ( − 3 ) . ( − 5 ) = ( − 1 ) . ( − 15 ) và x,y∈Z,x > y nên (x;y){(5;3),(15;1),(−3;−5),(−1;−15)}

 

26 tháng 1 2018

Ta có: \(\frac{12}{-6}=\frac{x}{5}\)

\(\Rightarrow x=\frac{5.12}{-6}=-10\)

Thay \(x=-10\) vào, ta được

\(\frac{-10}{5}=\frac{-y}{3}\)

\(\Rightarrow-y=\frac{-10.3}{5}=-6\)

\(\Rightarrow y=6\)

Vậy \(x+y=-10+6=-4\)

26 tháng 1 2018

12/-6=x/5=y/3

x=12*5/-6=-10

y=12*3/-6=-6

=>x+y=-10-6=-16

AH
Akai Haruma
Giáo viên
14 tháng 6 2021

Lời giải:

$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$

Mà:

$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$

$=(-z)^3-3xy(-z)+z^3=3xyz$

Và:

\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)

\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)

\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)

Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)

\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)

Ta có đpcm.

 

 

19 tháng 8 2017

12 tháng 1 2019

Ta có:

Chọn C.

23 tháng 2 2018

20 tháng 12 2017

Trắc nghiệm Chương 1 Đại Số 7 (Phần 2) - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Đáp án A

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1