Cho x, y là 2 số nguyên thỏa mãn:
12−6=x5=−y312−6=x5=−y3
Tính tổng x + y?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: A
x 5 = 3 y ⇒ x . y = 5.3 = 15
Mà 15 = 5.3 = 15.1 = ( − 3 ) . ( − 5 ) = ( − 1 ) . ( − 15 ) và x,y∈Z,x > y nên (x;y)∈{(5;3),(15;1),(−3;−5),(−1;−15)}
Ta có: \(\frac{12}{-6}=\frac{x}{5}\)
\(\Rightarrow x=\frac{5.12}{-6}=-10\)
Thay \(x=-10\) vào, ta được
\(\frac{-10}{5}=\frac{-y}{3}\)
\(\Rightarrow-y=\frac{-10.3}{5}=-6\)
\(\Rightarrow y=6\)
Vậy \(x+y=-10+6=-4\)
Lời giải:
$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$
Mà:
$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$
$=(-z)^3-3xy(-z)+z^3=3xyz$
Và:
\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)
\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)
\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)
Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)
\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)
Ta có đpcm.