K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ACB=góc ADB=90 độ

=>ACDB nội tiếp và BC vuông góc AE, AD vuông góc BE

góc ECF+góc EDF=180 độ

=>ECFD nội tiếp

b: ECFD nội tiếp

=>góc CEF=góc CDF
=>góc AEF=góc ADC

c: \(S_{q\left(AOC\right)}=\dfrac{pi\cdot3^2\cdot50}{360}=\dfrac{pi\cdot5}{4}\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:
a.

Ta thấy $\widehat{ACB}=\widehat{ADB}=90^0$ (góc nội tiếp chắn nửa đường tròn)

$\Rightarrow \widehat{ECF}=180^0-\widehat{ACB}=180^0-90^0=90^0$; $\widehat{EDF}=180^0-\widehat{ADB}=180^0-90^0=90^0$
Tứ giác $ECFD$ có tổng 2 góc đối $\widehat{ECF}+\widehat{EDF}=90^0+90^0=180^0$ nên $ECFD$ là tứ giác nội tiếp.

b.

Vì $ECFD$ là tứ giác nội tiếp nên $\widehat{AEF}=\widehat{CEF}=\widehat{CDF}=\widehat{ADC}$ (góc nt chắn cung $CF$)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Hình vẽ:

20 tháng 10 2017

a) Vì C, D thuộc nửa đường tròn đường kính AB nên

A C B = A D B = 90 o ⇒ F C H = F D H = 90 o ⇒ F C H + F D H = 180 o  

Suy ra tứ giác CHDF nội tiếp

b) Vì AH BF, BH AF nên H là trực tâm ∆ AFB FH AB

⇒ C F H = C B A ( = 90 o − C A B ) ⇒ Δ C F H ~ Δ C B A ( g . g ) ⇒ C F C B = C H C A ⇒ C F . C A = C H . C B

a: góc ANM+góc ACM=180 độ

=>ANMC nội tiếp

b: Xét ΔANM vuông tại N và ΔADB vuông tại D có

góc NAM chung

=>ΔANM đồng dạng với ΔADB

=>AN/AD=AM/AB

=>AM*AD=AN*AB

a: góc ACB=1/2*180=90 độ

=>góc FCE=90 độ

góc ADB=1/2*180=90 độ

=>gó FDE=90 độ

Vì góc FCE+góc FDE=180 độ

nên FCED nội tiếp

b: Đề sai rồi bạn vì F,C,A thẳng hàng

c: góc ICO=góc ICE+góc OCE

=góc IEC+góc OBE

=90 độ-góc CBA+góc CBA

=90 độ

=>CI là tiếp tuyến của (O)

a: góc ACB=1/2*180=90 độ

=>góc FCE=90 độ

góc ADB=1/2*180=90 độ

=>gó FDE=90 độ

Vì góc FCE+góc FDE=180 độ

nên FCED nội tiếp

b: Đề sai rồi bạn vì F,C,A thẳng hàng

c: góc ICO=góc ICE+góc OCE

=góc IEC+góc OBE

=90 độ-góc CBA+góc CBA

=90 độ

=>CI là tiếp tuyến của (O)

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0