Cho tam giác ABC cân tại A.Vẽ các đường cao BH, CK.
a) CM BK=CH
b) CM HK//BC
c) Cho AB=6cm, BC=4cm. Tính HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác BCK và tam giác CBH có
góc B = góc C ( tam giác ABC cân )
BC ( chung )
góc BKC = góc CHB (=90độ )
=> tam giác BCK = tam giác CBH( ch-gn)
=> BK=CH ( 2 cạnh tương ứng )
b, ta có : AK = AB-BK
AH= AC-CH
mà AB=AC ( tam giác ABC cân )
BK=CH( cmt)
=>AK=AH
=> \(\frac{AK}{AB}\) = \(\frac{AH}{AC}\)
Xét tam giác AHK và tam giác ACB có
\(\frac{AK}{AB}=\frac{AH}{AC}\) ( CMT)
=> HK//BC (hq đ/ly talet)
a) Xét 2 tam giác vuông: \(\Delta KBC\) và \(\Delta HCB\)
\(\widehat{KBC}=\widehat{HCB}\)
\(BC\) chung
suy ra: \(\Delta KBC=\Delta HCB\)(ch_gn)
\(\Rightarrow\)\(BK=CH\)
b) \(AB=AC\) VÀ \(BK=CH\)
\(\Rightarrow\)\(\frac{BK}{AB}=\frac{HC}{AC}\)
\(\Rightarrow\) \(KH//BC\) (theo định lý Ta-lét đảo)
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H co
BC chung
góc KBC=góc HCB
=>ΔKBC đồng dạng với ΔHCB và ΔKCB=ΔHBC
b: AK+KB=AB
AH+HC=AC
mà HC=KB; AB=AC
nên AK=AH
mà AB=AC
nên KH//BC
a) Chứng minh BH=CK nhé( Đề em viết sai)
Vì tam giác ABC cân tại A suy ra AB=AC, góc B=góc C (T/c tam giác cân)
Xét tam giác vuông AHB và tam giác vuông AKC
có góc BAC chung
AB=AC (CMT)
suy ra tam giác AHB = tam giác AKC (cạnh huyền-góc nhọn)
suy ra BH = CK (hai cạnh tương ứng)
AH = AK (hai cạnh tương ứng)
b) Xét tam giác vuông AIH và tam giác vuông AIK
có AI chung
AH=AK (CMT)
suy ra tam giác AIH và tam giác AIK (cạnh huyền-cạnh góc vuông)
suy ra góc KAI=góc HAI (hai góc tương ứng), mà I nằm trong tam giác ABC
suy ra AI là tia phân giác của góc BAC
c) vì tam giác ABC cân tại A suy ra góc A+2.góc B=1800 suy ra \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)
Ta có AH=AK suy ra tam giác AHK cân tại A suy ra góc AKH=góc AHK
suy ra góc A +góc AKH+góc AHK=1800
suy ra góc A+2.góc AKH=1800suy ra \(\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\) (3)
Từ (2) và (3) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà góc AKH đồng vị với góc ABC
suy ra HK//BC
a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
góc KBC=goc HCB
=>ΔKBC=ΔHCB
=>BK=HC
=>AK=AH
b: Xét ΔABC có AK/AB=AH/AC
nên KH//BC