K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2021

\(\)đặt \(2x^2+y^2+\dfrac{28}{x}+\dfrac{1}{y}=A\)

\(=>A=2x^2+y^2-7x-y+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

\(A=2x^2-8x+8+y^2-2y+1+x+y-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

\(A=2\left(x-2\right)^2+\left(y-1\right)^2+\left(x+y\right)-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)

áp dụng BDT AM-GM\(=>\dfrac{28}{x}+7x+\dfrac{1}{y}+y\ge2\sqrt{28.7}+2\sqrt{1}=30\)

\(=>A\ge30+3-9=24\)

dấu"=" xảy ra<=>x=2,y=1

 

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

22 tháng 7 2016

a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2

22 tháng 7 2016

Cảm ơn bn nha :))

NV
23 tháng 11 2019

a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)

\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)

\(\Rightarrow x=-\frac{1}{2}\)

b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)

\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)

\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)

\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)

"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)

23 tháng 11 2019

Nguyễn Trúc Giang, Duy Khang, Vũ Minh Tuấn, Võ Hồng Phúc, tth, No choice teen, Phạm Lan Hương,

Nguyễn Lê Phước Thịnh, @Nguyễn Việt Lâm, @Akai Haruma

giúp em vs ạ! Cần trước 5h chiều nay ạ

Thanks nhiều

19 tháng 9 2019

a) \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2\left(y^2+\frac{1}{x^2}\right)\)

\(+\frac{1}{y^2}\left(y^2+\frac{1}{x^2}\right)=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)

Áp dụng BĐT Cauchy - Schwar cho 2 số không âm, ta được:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

C/m được BĐT phụ: \(1=\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)

\(\Rightarrow M\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))

19 tháng 9 2019

\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+\left(x+y\right)1}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\)

Tương tự \(\frac{16}{3x+2y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{y+z}\)

Cộng vế theo vế ta có:

\(16\left(\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}+\frac{1}{2x+3y+3z}\right)\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=24\)

\(\Rightarrow\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\left(đpcm\right)\)

P/S:Có dùng S-vác ngược dấu ạ.ý tưởng tách mẫu là từ tth_new - Trang của tth_new - Học toán với OnlineMath nha !

31 tháng 7 2019

Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)

Áp dụng BĐT Buniacoxki ta có 

\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)

=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)

=> \(A\ge\sqrt{3}\)

\(MinA=\sqrt{3}\)khi x=y=z=3

17 tháng 10 2020

Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)

Dấu bằng xảy ra khi \(x=y=z=2\)

17 tháng 10 2020

Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\)\(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)

Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)

Đẳng thức xảy ra khi x = y = z = 2