7/10×11+7/11×12+...+7/69×70 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(B=\frac{1}{3}-\frac{1}{111}\)
\(B=\frac{12}{37}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(C=7.\frac{3}{35}\)
\(C=\frac{3}{5}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(B=4.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)
\(B=4.\left(\frac{1}{3}-\frac{1}{111}\right)=4.\frac{12}{37}=\frac{48}{37}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(C=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(C=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
\(A=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
\(A=\frac{1}{3}-\frac{1}{111}\)
\(A=\frac{12}{37}\)
mà dài quá bạn ơi ban tách ra thành nhiều câu hỏi đi thế này trả lời lâu lắm
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(A=7\cdot\frac{3}{35}=\frac{21}{35}\)
\(A=\frac{7}{10\cdot11}+\frac{7}{11\cdot12}+\frac{7}{12\cdot13}+...+\frac{7}{69\cdot70}\)
\(A=7\left(\frac{1}{10\cdot11}+\frac{1}{11\cdot12}+\frac{1}{12\cdot13}+...+\frac{1}{69\cdot70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\left(\frac{1}{10}-\frac{1}{70}\right)=7\cdot\frac{3}{35}=\frac{3}{5}\)
\(B=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\)
\(B=\frac{1}{2}\left(\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+\frac{2}{29\cdot31}+...+\frac{2}{73\cdot75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(C=\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+\frac{4}{6\cdot8}+...+\frac{4}{2008\cdot2010}\)
\(C=\frac{4}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
\(C=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=2\left(\frac{1}{2}-\frac{1}{2010}\right)=2\cdot\frac{502}{1005}=\frac{1004}{1005}\)
a. -37 + 54 + -70+ -163 + 246
= ( 54 + 246) + (-37 - 163 ) - 70
= 300 -200 - 70 = 30
b. -359+ 181+ -123+ 350+ -172
=(-178)+227+(-172)
=49+(-172)
=-123
c.-69+ 53+ 46+ -94+-14+ 78
=(-16)+(-48)+64
=-64+64
=0
d. 13- 12+ 11+10- 9+ 8- 7- 6+ 5- 4+ 3+2- 1
= 13 - (13 - 1) + (13 - 2) + (13 - 3) - (13 - 4) + (13 - 5) - (13 - 6) - (13 - 7) + (13 - 8) - (13 - 9) + (13 - 10) + (13 - 11) - (13 - 12)
= 13 - 13 + 1 + 13 - 2 + 13 - 3 - 13 + 4 + 13 - 5 - 13 + 6 - 13 + 7 + 13 - 8 - 13 + 9 + 13 - 10 + 13 - 11 - 13 + 12
= (13 - 13 + 13 + 13 - 13 + 13 - 13 - 13 + 13 - 13 + 13 + 13 - 13) + (1 - 2 - 3 + 4 - 5 + 6 + 7 - 8 + 9 - 10 - 11 = 12)
= 13 + 0
= 13
a) \(-37+54+\left(-70\right)+\left(-163\right)+246\)
\(=\left(246+54\right)-\left(37+163\right)-70\)
\(=300-200-70\)
\(=100-70=30\)
b) \(-359+181+\left(-123\right)+350+\left(-172\right)\)
\(=-359+181-123+350-172\)
\(=\left(-359+350\right)+\left(181-172\right)-123\)
\(=-9+9-123\)
\(=-123\)
c) \(-69+53+46+\left(-94\right)+\left(-14\right)+78\)
\(=-69+53+46-94-14+78\)
\(=\left(-69+78\right)+\left(53-14\right)+\left(46-94\right)\)
\(=9+39-48\)
\(=48-48=0\)
d) \(13-12+11+10-9+8-7-6+5-4+3+2-1\)
\(=\left(13-12\right)+\left(11+10\right)-\left(9-8\right)-\left(7+6\right)+\left(5-4\right)+\left(3+2-1\right)\)
\(=1+21-1-13+1+5\)
\(=21-13+1+5\)
\(=8+1+5=9+5=14\)
1) \(A=\frac{7}{10\times11}+\frac{7}{11\times12}+\frac{7}{12\times13}+...+\frac{7}{69\times70}\)
\(A=7\times\left(\frac{1}{10\times11}+\frac{1}{11\times12}+\frac{1}{12\times13}+...+\frac{1}{69\times70}\right)\)
\(A=7\times\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7\times\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(A=7\times\frac{3}{35}\)
\(A=\frac{3}{5}\)
2) \(B=\frac{1}{25\times27}+\frac{1}{27\times29}+\frac{1}{29\times31}+...+\frac{1}{73\times75}\)
\(B=\frac{1}{2}\times\left(\frac{2}{25\times27}+\frac{2}{27\times29}+\frac{2}{29\times31}+...+\frac{2}{73\times75}\right)\).
\(B=\frac{1}{2}\times\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\times\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(B=\frac{1}{2}\times\frac{2}{75}\)
\(B=\frac{1}{75}\)
3) \(C=\frac{4}{2\times4}+\frac{4}{4\times6}+\frac{4}{6\times8}+...+\frac{4}{2008\times2010}\)
\(C=\frac{4}{2}\times\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{2008\times2010}\right)\)
\(C=2\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(C=2\times\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(C=2\times\frac{502}{1005}\)
\(C=\frac{1004}{1005}\)
_Chúc bạn học tốt_
=7x(1/10x11+1/11x12+...+1/69x70
=7x(1/10-1/11+1/11+1/12+...+1/69+1/70)
=7x(1/10-1/70)
=7x(7/70-1/70)
=7x3/35
=3/5