ko dùng máy tính hãy so sánh A=5^2020+1/5^2021+1 và B=10^2019+1/10^2020+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
A = \(\dfrac{5^{2020}+1}{5^{2020}+1}\)
B = \(\dfrac{5^{2019}+1}{5^{2020}+1}\)
\(\Leftrightarrow\) B < A
18:
a: \(S=3\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)
=3*(1/2-1/4+1/4-1/6+...+1/98-1/100)
=3*49/100=147/100
b: Để A là số nguyên thì n-1 thuộc Ư(2)
=>n-1 thuộc {1;-1;2;-2}
=>n thuộc {2;0;3;-1}
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
Giải:
Ta có:
A=\(\dfrac{10^{2019}-1}{10^{2020}+1}\)
10A=\(\dfrac{10^{2020}-10}{10^{2020}+1}\)
10A=\(\dfrac{10^{2020}+1-11}{10^{2020}+1}\)
10A=\(1+\dfrac{-11}{10^{2020}+1}\)
Tương tự:
B=\(\dfrac{10^{2020}-1}{20^{2021}+1}\)
10B=\(1+\dfrac{-11}{10^{2021}+1}\)
Vì \(\dfrac{-11}{10^{2020}+1}< \dfrac{-11}{10^{2021}+1}\) nên 10A<10B
⇒A<B
Chúc bạn học tốt!
Ta có \(b-a=9.10^{2019}-\dfrac{9}{10^{2021}}>0\Rightarrow b>a\).
bài 1:
ssh của A là:
(151-3):2+1=75
A=(151+3)x75:2=5775
đáp số: 5775
ta có: M=10^2020 +1 / 10^2019 +1
=> M/10= 10^2020 +1 / 10( 10^2019 +1 )
= 10^2020+1/ 10^2020 +10
=> 10/A= 10^2020 +10/10^2020 +1
=(10^2020 +1) +9/ 10^2020+1
=10^2020+1 /10^2020+1 + 9/10^2020+1
=1+ 9/10^2020+1
ta lại có: N=10^2021 +1/10^2020 +1
=> N/10= 10^2021+1/ 10(10^2020+1)
= 10^2021+1 / 10^2021+10
=> 10/N=10^2021+10 / 10^2021+1
=(10^2021+1) +9/10^2021+1
=10^2021+1/10^2021+1 +9/10^2021+1
=1+ 9/10^2021+1
ta thấy: 10/M>10N
=>M<N
\(M=\dfrac{10^{2020}+1}{10^{2019}+1}=1-\dfrac{9}{10^{2019}+1}\)
\(N=\dfrac{10^{2021}+1}{10^{2020}+1}=1-\dfrac{9}{10^{2020}+1}\)
Ta có: \(10^{2019}+1< 10^{2020}+1\)
\(\Leftrightarrow\dfrac{9}{10^{2019}+1}>\dfrac{9}{10^{2020}+1}\)
\(\Leftrightarrow-\dfrac{9}{10^{2019}+1}< -\dfrac{9}{10^{2020}+1}\)
\(\Leftrightarrow M< N\)
A = \(\dfrac{5^{2020}+1}{5^{2021}+1}\) ⇒ A \(\times\) 10 = 2 \(\times\)5 \(\times\) \(\dfrac{5^{2020}+1}{5^{2021}+1}\) =2\(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\)
10A =2 \(\times\) \(\dfrac{5^{2021}+5}{5^{2021}+1}\) = 2 \(\times\)(1 + \(\dfrac{4}{5^{2021}+1}\) )= 2 + \(\dfrac{8}{5^{2021}+1}\) >2
B = \(\dfrac{10^{2019}+1}{10^{2020}+1}\) ⇒ B \(\times\) 10 = 10 \(\times\) \(\dfrac{10^{2019}+1}{10^{2020}+1}\)= \(\dfrac{10^{2020}+10}{10^{2020}+1}\)
10B = \(\dfrac{10^{2020}+10}{10^{2020}+1}\) = 1 + \(\dfrac{9}{10^{2020}+1}\) < 2
10A > 2 > 10B ⇒ 10A>10B ⇒ A>B