K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Ta có: \(3mx>x+2\Rightarrow\left(3m-1\right)x>2\left(1\right)\)

Với \(3m-1=0\Rightarrow0>2\): Vô lý nên \(3m-1\ne0.\)

Với \(3m-1>0\Leftrightarrow\Rightarrow m>\frac{1}{3}\Rightarrow x>\frac{2}{3m-1}.\)

Để (1) đúng với mọi x > 1 suy ra\(1\ge\frac{2}{3m-1}\Rightarrow\frac{2}{3m-1}-1\le0\Rightarrow\frac{3-3m}{3m-1}\le0\)

Do 3m - 1 > 0 nên \(3-3m\le0\Rightarrow m\ge1.\)

Kết hợp điều kiện suy ra \(m\ge1.\)

Với \(3m-1< 0\Leftrightarrow\Rightarrow m< \frac{1}{3}\Rightarrow x< \frac{2}{3m-1}.\)

Khi đó không xảy ra trường hợp \(\forall x>1\) thì \(x< \frac{2}{3m-1}.\)

Vậy trường hợp này loại.

Kết luận \(m\ge1.\)

1 tháng 4 2023

help me: tìm n biết 2^n + 3^n = 5^n với n E N

2 tháng 4 2023

\(x^2-x+1-m=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=1\\x_1x_2=\dfrac{c}{a}=1-m\end{matrix}\right.\)

Ta có :

\(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)

\(\Leftrightarrow5\left(\dfrac{x_2+x_1}{x_1x_2}\right)-x_1x_2+4=0\)

\(\Leftrightarrow5\left(\dfrac{1}{1-m}\right)-\left(1-m\right)+4=0\)

\(\Leftrightarrow\dfrac{5}{1-m}-1+m+4=0\)

\(\Leftrightarrow\dfrac{5}{1-m}+m+3=0\)

\(\Leftrightarrow\dfrac{5+m\left(1-m\right)+3\left(1-m\right)}{1-m}=0\)

\(\Leftrightarrow5+m-m^2+3-3m=0\)

\(\Leftrightarrow-m^2-2m+8=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)

2 tháng 4 2023

loading...

 

a: Trường hợp 1: m=0

Bất phương trình sẽ là \(0x^2+3\cdot0\cdot x+0+1>0\)

=>1>0(luôn đúng)

Trường hợp 2: m<>0

\(\text{Δ}=\left(3m\right)^2-4m\left(m+1\right)\)

\(=9m^2-4m^2-4m=5m^2-4m\)

Để phương trình có nghiệm đúng với mọi số thực x thì \(\left\{{}\begin{matrix}m\left(5m-4\right)< 0\\m>0\end{matrix}\right.\Leftrightarrow0< m< \dfrac{4}{5}\)

Vậy: 0<=m<4/5

b: Trường hợp 1: m=4

\(g\left(x\right)=\left(4-4\right)\cdot x^2+\left(2\cdot4-8\right)x+4-5=-1< 0\)(luôn đúng)

Trường hợp 2: m<>4

\(\text{Δ}=\left(2m-8\right)^2-4\left(m-4\right)\left(m-5\right)\)

\(=4m^2-32m+64-4\left(m^2-9m+20\right)\)

\(=4m^2-32m+64-4m^2+36m-80\)

=4m-16

Để bất phương trình luôn âm thì \(\left\{{}\begin{matrix}4m-16< 0\\m-4< 0\end{matrix}\right.\Leftrightarrow m< 4\)

Vậy: m<=4

3 tháng 4 2022

\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)

Vậy $m=2$

5 tháng 11 2014

(ax+b)(x2+cx+1)=x3-3x+2

ax3+acx2+ax+bx2+cbx+b=x3-3x+2

ax3+(acx2+bx2)+(ax+cbx)+b=X3-3x+2

ax3+x2(ac+b)+x(a+cb)+b=x3+0x2-3x+2

Đồng nhất các hệ số hai vế của đẳng thức,ta có:(dùng dấu ngoặc nhọn nha bạn)

a=1                                          a=1 

ac+b=0     =>(dấu ngoặc nhọn)   c=-2

a+cb=-3                                    b=2

b=2                                                  (cái tính kết quả bạn có thế tính rõ hơn,mình làm hơi tắt)

Vậy a=1,b=2,c=-2 thì thỏa mãn đẳng thức đã cho

(Nếu không hiểu các bạn có thể xem trên google chuyên dề phương pháp hệ số bất định của bài phân tích đa thức thành nhân tử)

 

 

5 tháng 11 2014
Mong các bạn ửng hộ bài giải của mình nha!

\(A=\left(\frac{2X-1}{x^2-4}+\frac{x+2}{x^2-x-2}\right):\frac{x-2}{x^2+3x+2}ĐK:x\ne\left\{2,-2,-1\right\}\)

a)  \(A=\left[\frac{\left(2x-1\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x+1\right)\left(x-2\right)}\right]:\frac{x-2}{\left(x+2\right)\left(x+1\right)}\)

\(A=\left[\frac{\left(2x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\right].\frac{\left(x+2\right)\left(x+1\right)}{x-2}\)

\(A=\frac{2x^2+x-1+x^2+4x.4}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}.\frac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)}\)

\(A=\frac{3x^2+5x+3}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}.\frac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)}\)

\(A=\frac{3x^2+5x+3}{\left(x-2\right)^2}\)

Ta có :\(3x^2+5x+3\)

\(=3\left(x^2+\frac{5}{3}x+1\right)\)

\(=3\left[x^2+2.\frac{5}{6}x+\frac{25}{36}+\frac{9}{36}\right]\)

\(=3\left[\left(x+\frac{5}{6}\right)^2+\frac{9}{36}\right]>0\)

Mà \(\left(x-2\right)^2>0\)

\(\Rightarrow A>0\left(dpcm\right)\)

\(b,A=11\Leftrightarrow\frac{3x^2+5x+3}{\left(x-2\right)^2}=11\)

\(\Rightarrow3x^2+5x+3=11.\left(x-2\right)^2\)

\(\Rightarrow3x^2+5x+3=11.\left(x^2-4x+4\right)\)

\(\Rightarrow8x^2-49x+41=0\)

\(\Rightarrow8x^2-8x-41x+41=0\)

\(\Rightarrow8x\left(x-1\right)-41\left(x-1\right)=0\)

\(\Rightarrow\left(8x-41\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}8x-41=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{41}{8}\\x=1\end{cases}}}\)(Thỏa mãn)

3 tháng 1 2019