Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. chứng minh rằng tam giác ABD bằng tam giác ACE, tam giác GBD là tam giác cân và 4GD bé hơn BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
a) BE = DC, ΔBEC = ΔCDB.
Vì ΔABC cân tại A nên: AB = AC.
Ta lại có: AB = AE + EB mà AE = EB (gt)
AC = AD + DC mà AD = DC (gt)
⇒ AE = EB = AD = DC
Vậy BE = DC.
Xét ΔBEC và ΔCDB có:
BE = CD (cmt)
∠ABC = ∠ACB (ΔABC cân)
BC : cạnh chung.
Do đó: ΔBEC = ΔCDB (c.g.c)
b) ΔBGC cân.
Vì ΔBEC = ΔCDB (câu a)
⇒ ∠ECB = ∠DBC (hai góc tương ứng)
⇒ ΔBGC cân tại G.
Câu c và hình chờ xíu :v
c) BC <4GD
Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2)
AG cắt BC tại H (HB = HC)
Xét ΔABH và ΔACH có:
AB = AC (gt)
BH = HC (cmt)
AH : chung
Do đó: ΔABH = ΔACH (c.c.c)
⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o
⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.
Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD
⇒ 4GD = DB + GC.
Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)
Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)
Từ (1) và (2) suy ra: BG + CG > BH + CH
Mà GB + CG = 4GD (cmt) và CB = BH + CH
⇒ 4GD > BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BD=CE
BC chung
Do đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Xét ΔABC có
AE/AB=AD/AC
Do đó: DE//BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
BD=CE(ΔABD=ΔACE)
Do đó: ΔBDC=ΔCEB(cạnh huyền-cạnh góc vuông)
a)Xét tam giác ABD và tam giác ACE,ta có:
A là góc chung
AB=AC(ví tam giác ABC cân tại A)
AE=AD(gt)
=> tam giác ABD=tam giác ACE(c.g.c)=>BD=CE( 2 cạnh tương ứng)
b)Vì BD,CE lần lượt là đường trung tuyến mà lại giao nhau tại G(mà BD=CE)=>GE=GD=1/3 BD=1/3 CE
=>EG=GD
Xét tam giác AEG và tam giác ADG ,ta có:
GE=GD(c/m trên)
AE=AD(gt)
AG cạnh chung
=>tam giác AEG=tam giác ADG(c.c.c)
=>góc EAG=góc DAG=>AG là tia p/g góc A
c)Ta có: Vì K là trung điểm AG;I là trung điểm GC và AD=DC
=>AI;CK:GD lần lượt là đường trung tuyến tam giác AGC=>BD;CK;AI đồng quy(t/c 3 đường trung tuyến của tam giác)
Xét ΔABD và ΔACE có
AB=AC
góc BAD chung
AD=AE
=>ΔABD=ΔACE
Sửa đề: ΔGBC cân tại G
Xét ΔEBC và ΔDCB có
EB=DC
góc EBC=góc DCB
BC chung
=>ΔEBC=ΔDCB
=>góc GBC=góc GCB
=>ΔGBC cân tại G