Cho ∆ABC vuông ở A, có AB=5cm, AC=4cm. Vẽ đường cao AH: a, Chứng minh ∆HBA~∆ABC b, Chứng minh AB2 = BH×BC. Tính BH×HC c, Trên AH lấy điểm K sao cho AK=1,2cm. Từ K vẽ đường thẳng song song BC cắt AB và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{BH}{BA}=\dfrac{BA}{BC}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{BH}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)
Suy ra: BH=1,8cm; AH=2,4cm
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔACB vuông tại A có AH là đường cao
nên AB^2=BH*BC
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
c: ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
BH=AB^2/BC=6^2/10=3,6cm
CH=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)
c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)
Áp dụng định lý pytago ta có :
`AC^2+AB^2=BC^2`
hay `16^2+12^2=BC^2`
`=>BC^2=400`
`=>BC=20(cm)`
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC