K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sin B=AH/AB

=>6/AB=sin60

=>\(AB=4\sqrt{3}\left(cm\right)\)

=>HB=2 căn 3(cm)

=>HC=8 căn 3(cm)

\(S_{AHC}=\dfrac{1}{2}\cdot8\sqrt{3}\cdot6=24\sqrt{3}\left(cm^2\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)

=>1/2*6*AC=24

=>AC*3=24

=>AC=8cm

=>BC=10cm

AH=6*8/10=4,8cm

H=8^2/10=6,4cm

S AHC=1/2*4,8*6,4=15,36cm2

27 tháng 1 2022

Bạn tự vẽ hình.

a, Dễ dàng chứng minh \(\Delta AHB=\Delta AHC\left(ch.gn\right)\)hoặc \(\Delta AHB=\Delta AHC\left(ch.cgv\right)\)

b, \(\Delta ABC\) cân tại A, \(AH\perp BC\)

=> AH là đường trung tuyến

=> \(BH=HC=\frac{BC}{2}=\frac{6}{2}=3cm\)

Áp dụng định lí pitago vào \(\Delta ABH\) vuông tại H

Từ đó, tính được \(AH=\sqrt{5^2-3^2}=4cm\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 6^2+8^2=10cm

HA=6*8/10=4,8cm

22 tháng 4 2021

Bạn tính lại câu c nhé! Có thể mình sai đâu đó.undefined

24 tháng 4 2021

ĐÚNG GỒI BẠN ƠI (CHỮ ƠI KÉO DÀI)haha

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

a: AC=8cm

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: AH=4,8cm

16 tháng 1 2022

bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx