Cho tam giac ABC vuông tại A,đcao AH,biết AH=6cm, góc ABC = 60 độ
Tính độ dài AB và diện tích tam giác AHCHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
=>1/2*6*AC=24
=>AC*3=24
=>AC=8cm
=>BC=10cm
AH=6*8/10=4,8cm
H=8^2/10=6,4cm
S AHC=1/2*4,8*6,4=15,36cm2
Bạn tự vẽ hình.
a, Dễ dàng chứng minh \(\Delta AHB=\Delta AHC\left(ch.gn\right)\)hoặc \(\Delta AHB=\Delta AHC\left(ch.cgv\right)\)
b, \(\Delta ABC\) cân tại A, \(AH\perp BC\)
=> AH là đường trung tuyến
=> \(BH=HC=\frac{BC}{2}=\frac{6}{2}=3cm\)
Áp dụng định lí pitago vào \(\Delta ABH\) vuông tại H
Từ đó, tính được \(AH=\sqrt{5^2-3^2}=4cm\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 6^2+8^2=10cm
HA=6*8/10=4,8cm
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
a: AC=8cm
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: AH=4,8cm
bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx
sin B=AH/AB
=>6/AB=sin60
=>\(AB=4\sqrt{3}\left(cm\right)\)
=>HB=2 căn 3(cm)
=>HC=8 căn 3(cm)
\(S_{AHC}=\dfrac{1}{2}\cdot8\sqrt{3}\cdot6=24\sqrt{3}\left(cm^2\right)\)