Cho biểu thức:
\(M=\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a-1}}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a+\sqrt{a-1}}}{\sqrt{a-a\sqrt{a}}}\)
với a > 0, a ≠ 1.
a) Chứng minh rằng M > 4.
b) Với những giá trị nào của a thì biểu thức N = 6/M nhận giá trị nguyên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\\ =\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\\ =\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) Ta có: \(A=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)
Với mọi a>0 và a≠1 ta có \(\sqrt{a}>0\Leftrightarrow\frac{1}{\sqrt{a}}>0\)
\(\Rightarrow A=1-\frac{1}{\sqrt{a}}< 1\left(đpcm\right)\)
c)
\(A=1-\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\left(tm\right)\)
Vậy.......
a,Với \(a>0;a\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)
b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)
\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)
Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)
Bài 1:
ĐK: $a\geq 0; a\neq 1$
a)
\(P=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)
\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)\)
\(=(\sqrt{a}+1)^2(\sqrt{a}-1)^2=(a-1)^2\)
b) \(P< 7-4\sqrt{3}\)
\(\Leftrightarrow (a-1)^2< (2-\sqrt{3})^2\)
\(\Leftrightarrow \sqrt{3}-2< a-1< 2-\sqrt{3}\)
\(\Leftrightarrow \sqrt{3}-1< a< 3-\sqrt{3}\)
Vậy $\sqrt{3}-1< a< 3-\sqrt{3}$ và $a\neq 1$
Bài 2:
a)
\(A=\frac{2}{a-\sqrt{a}}.\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}=\frac{2(\sqrt{a}-1)^2}{\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}=\frac{2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+1)}\)
b)
Xét hiệu \(A-1=\frac{2\sqrt{a}-2-a-\sqrt{a}}{\sqrt{a}(\sqrt{a}+1)}=-\frac{a-\sqrt{a}+2}{\sqrt{a}(\sqrt{a}+1)}\)
Thấy rằng: \(a-\sqrt{a}+2=(\sqrt{a}-\frac{1}{2})^2+\frac{7}{4}>0; \sqrt{a}(\sqrt{a}+1)>0 \) với mọi $a>0; a\neq 1$ nên:
\(A-1=-\frac{a-\sqrt{a}+2}{\sqrt{a}(\sqrt{a}+1)}<0\Rightarrow A< 1\)