K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

a)

Xét 2 tg ABD và ACD, có

   AD cạnh chung

AB=AC (tgABC cân tại A)

góc BAD = góc CAD

=> tg ABD=tg ACD

b)

Trong tgABC, G là trọng tâm và AD là đường phân giác.

Mà trong 1 tg cân đường phân giác trùng lên đường trung tuyến.

Mặt khác thì trọng tâm nằm trên đường trung tuyến.

=> 3 điểm A,D,G nắm trên cùng 1 đoạn thẳng

Hay: 3 điểm A,D,G thẳng hàng

c)

Trong tg cân ABC, có đường phân giác AD

=> AD trùng lên đường trung trực xuất phát từ A

=> AD>AB ( tính chất đường vuông góc với đường xiên)

d)

Ta có: tg ABD vuông tại D (AD là đường trung trực)

=> AD^2 +DB^2 = AB^2 (định lí Py-ta-go)

=>AD^2 +5^2= 13^2  (DB^2=5^2 vì DB=DC=10/2=5)

=>AD^2=13^2-5^2=144=12^2

=> AD=12 (cm)

Mà AG là trọng tâm

=>AG=2/3 AD=8 cm

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

DO đó: ΔAHB=ΔAHC

Suy ra: HB=HC

hay H là trung điểm của BC

b: Xét ΔMAD và ΔMBH có 

\(\widehat{MAD}=\widehat{MBH}\)

MA=MB

\(\widehat{AMD}=\widehat{BMH}\)

Do đó:ΔMAD=ΔMBH

Suy ra: AD=BH

hay BH=2,5cm

Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

hay AH=6(cm)

6 tháng 2 2022

bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

CD=AC-CD=5cm

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

Do đó: ΔBAD=ΔBED
Suy ra: BA=BE

hay ΔBAE cân tại B

c: Ta có: DE=DA
mà DA<DF

nên DE<DF

18 tháng 5 2018

30 tháng 4 2021

a, Xét tam giác ABH và tam giác ACH vuông tại H có:   +, AB = AC ( vì tam giác ABC cân tại A)

                                                                                     +, AH chung

=> tam giác ABH = tam giác ACH (ch-cgv) => BH = CH = 6/2 = 3cm

b, Vì BH = CH => AH là đường trung tuyến của tam giác ABC => G nằm trên AH => A, G, H thẳng hàng

c, Vì  tam giác ABH = tam giác ACH => góc BAH = góc CAH

Xét tam giác ABG và tam giác ACG có 

AB = AC ( vì tam giác ABC cân tại A )

góc BAH = góc CAH ( chứng minh trên)

AG chung

=>tam giác ABG = tam giác ACG(c.g.c)

=> góc ABG = góc ACG

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: ta có: ΔBAD=ΔBHD

=>BA=BH và DA=DH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

=>D nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BD là đường trung trực của AH

Ta có: DA=DH

DH<DC

Do đó: DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

=>\(\widehat{ADK}=\widehat{HDC}\)

mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)

nên \(\widehat{ADK}+\widehat{ADH}=180^0\)

=>K,D,H thẳng hàng

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH và AK=HC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: ΔDAK=ΔDHC

=>DK=DC

=>D nằm trên đường trung trực của CK(4)

Từ (3),(4) suy ra BD là đường trung trực của CK

=>BD\(\perp\)CK