Tìm những giá trị nguyên của x: P= x2+2x-4/x+2 có giá trị là 1 số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
\(A=\left(2x+1\right)\left(x^2+1\right)+\dfrac{4}{2x+1}\) (chia đa thức)
Để A nguyên \(\Rightarrow4⋮2x+1\Rightarrow\left(2x+1\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x=\left\{-\dfrac{5}{2};-\dfrac{3}{2};-1;0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)
x thỏa mãn đk đề bài là \(x=\left\{-1;0\right\}\)
Để \(A\) là số nguyên thì \(\left(6x-4\right)⋮\left(2x+1\right)\)
Ta có :
\(6x-4=6x+3-7=3\left(2x+1\right)-7\) chia hết cho \(2n+1\) \(\Rightarrow\) \(\left(-7\right)⋮\left(2x+1\right)\) \(\Rightarrow\) \(\left(2x+1\right)\inƯ\left(-7\right)\)
Mà \(Ư\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{0;-1;3;-4\right\}\)
Năm mới zui zẻ nhá ^^
Hướng dẫn giải:
Điều kiện xác định của phân thức: x ≠ 1
Ta có
Để N nguyên nguyên ⇒ x - 1 là ước của 2
Ư ( 2 ) = 1 ; - 1 ; 2 ; - 2
x – 1 = 1 ⇒ x =2 (thỏa mãn điều kiện xác định);
x - 1 = -1 ⇒ x = 0 (thỏa mãn điều kiện xác định);
x - 1 = 2 ⇒ x = 3 (thỏa mãn điều kiện xác định);
x - 1 = -2 ⇒ x = -1 (thỏa mãn điều kiện xác định);
Vậy với x ∈ { -1;0;2;3 } thì phân thức N nhận giá trị nguyên
Chọn đáp án B
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện.
Hướng dẫn giải:
Điều kiện xác định của phân thức: x ≠ 2
Ta có
Để M nguyên, x nhận giá trị nguyên và x - 2 là ước của 4
Ư ( 4 ) = 1 ; - 1 ; 2 ; - 2 ; 4 ; - 4
x - 2 = 1 ⇒ x = 3 (thỏa mãn điều kiện xác định);
x – 2 = -1 ⇒ x = 1 (thỏa mãn điều kiện xác định);
x – 2 = 2 ⇒ x = 4 (thỏa mãn điều kiện xác định);
x - 2 = -2 ⇒ x = 0 (thỏa mãn điều kiện xác định);
x – 2 = 4 ⇒ x = 6 (thỏa mãn điều kiện xác định);
x – 2 = -4 ⇒ x = -2 (thỏa mãn điều kiện xác định);
Vậy với x ∈ {-2; 0; 1; 3; 4; 6} thì giá trị phân thức là nguyên
\(C=\dfrac{\left(x^2+3x\right)\left(x^2+2\right)-2}{x^2+2}=x^2+3x-\dfrac{2}{x^2+2}\)
\(C\in Z\Leftrightarrow2⋮\left(x^2+2\right)\)
\(\Leftrightarrow x^2+2=2\Rightarrow x=0\)