Cho tam giác ABC có ba góc nhọn
nội tiếp (O;R). Tiếp tuyến tại B và C của (O) cắt nhau tại I. Đường thẳng AI cắt (O) tại điểm thứ
hai là D (khác A). Đoạn thẳng OI cắt BC tại H.
a) Chứng minh : OI vuông góc với BC và HB.HC = HOHI
b) Vẽ OK vuông góc với AD. Chứng minh 5 điểm I, B, K, O, C cùng thuộc một đường tròn
c) Từ D kẻ đường thẳng vuông góc với OB, đường thẳng này cắt BC tại M và cắt AB tại N.
Chứng minh : M là trung điểm của DN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BHD+góc BMD=180 độ
=>BHDM nội tiếp
b: BHDM nội tiếp
=>góc HDM+góc HBM=180 độ
=>góc ADM=góc ABC
=>góc ADM=góc ADC
=>DA là phân giáccủa góc MDC
c: Xét tứ giác DHNC có
góc DHC=góc DNC=90 độ
=>DHNC nội tiếp
=>góc NHD=góc NDC
góc NHD+góc MHD
=180 độ-góc NCD+góc MBD
=180 độ+180 độ-góc ABD-góc ACD
=180 độ
=>M,H,N thẳng hàng
a) Xét tứ giác AEHF có
\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc INC+góc IMC=180 độ
=>INCM nội tiếp
b: Xét ΔINB vuông tại N và ΔIMA vuông tại M có
góc NIB=góc MIA
=>ΔINB đồng dạng với ΔIMA
=>IN/IM=IB/IA
=>IN*IA=IM*IB
c: góc AIH=góc BIN=góc BCA
=>góc AIH=góc AHI
=>AI=AH
a: góc ACM=1/2*sđ cung AM=90 độ
b: góc ADB=góc AEB=90 độ
=>ABDE nội tiếp
Ta có :
Do BD và CE là các đường cao nên
suy ra góc BEC = góc BDC =90 độ
Xét tứ giác BCDE,có:
góc BEC=góc BDC
vậy BCDE là tứ giác nội tiếp(đpcm)
Bạn có đáp án câu c bài này chưa ạ?