gieo 1 con xúc sắc cân đối 1 lầ. số kết quả thuận lợi trong các biến cố sau là bao nhiêu?
a, gieo được mặt có số chấm là 3
b, gieo được mặt có số chấm chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến cố A : vì trong xúc xắc có 1 mặt có 4 chấm trên tổng 6 mặt nên xắc suất gieo ra mặt 4 chấm là \(\dfrac{1}{6}\)
b) Biến cố B : vì trong các mặt chỉ có 5 chấm là chia hết cho 5 nên xác suất gieo ra mặt 5 chấm là là \(\dfrac{1}{6}\)
c) Biến cố C : vì số chấm trong mỗi mặt của xúc xắc là từ 1 đến 6 chấm nên biến cố C là biến cố không thể. Do đó, xác suất xảy ra biến cố C là 0.
a: A={2}
omega={1;2;3;4;5;6}
=>P(A)=1/6
b: B={2;4;6}
=>n(B)=3
=>P(B)=3/6=1/2
c: C={3;4;5;6}
=>n(C)=4
=>P(C)=4/6=2/3
a, Biến cố chắc chắn là biến cố B
Biến cố không thể là C
Biến cố ngẫu nhiên là A
b, Biến cố ngẫu nhiên là : A : gieo được mặt có số chấm lớn hơn 5
\(\Rightarrow A=\left\{6\right\}\) => có 1 khả năng
Gieo ngẫu nhiên xúc sắc có 6 khả năng xảy ra
=> Xác xuất là : \(P\left(A\right)=\dfrac{1}{6}\)
Tập hợp A gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}
a) Trong các số 1, 2, 3, 4, 5, 6, có hai số là hợp số là: 4, 6.
Vậy có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là hợp số” là: mặt 4 chấm, mặt 6 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
b) Trong các số 1, 2, 3, 4, 5, 6, có hai số chia 3 dư 1 là: 1, 4.
Vậy có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 3 dư 1” là: mặt 1 chấm, mặt 4 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
c) Trong các số 1, 2, 3, 4, 5, 6, có ba số là ước của 4 là: 1, 2, 4.
Vậy có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là ước của 4” là: mặt 1 chấm, mặt 2 chấm, mặt 4 chấm (lấy ra từ tập hợp A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}).
Số kết quả có thể xảy ra là 6 vì con xúc xắc có 6 mặt.
Số kết quả thuận lời của \(A\) là 2 (ứng với mặt 3 chấm và mặt 6 châm).
Xác suất của biến cố \(A\) là:
\(P\left( A \right) = \frac{2}{6} = \frac{1}{3}\).
a) Theo biến cố A ta có các mặt có thể ra là 6 chấm nên xác suất ra là: P(A) = \(\frac{1}{6}\)
b) Theo biến cố B ta có các mặt thỏa mãn nhỏ hơn 7 là tất cả các mặt của xúc xắc nên B là biến cố chắc chắn. Do đó, P(B) = 1
a) Không gian mẫu : Ω= { (i,j)∖ i.j = 1,2,3,4,5,6}
với i là số chấm xuất hiện trên mặt con súc sắc thứ nhất , j là số chấm xuất hiên trên mặt con súc sắc thứ 2. → /Ω/ = 36
b) từ gt ta có:
ΩA = { (1,1); (1,2); (1,3); (1,4); (1,5); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (4,1); (4,2); (5,1); (1,6); (3,4); (4,3); (5.2); (2,5); (6,1)}
→/ΩA/ = 21
Do đó: P(A) = /ΩA/ phần /Ω/ = 21/36 = 7/12
c) từ gt có:
ΩB = { (1,6) ; (2,6);... (6,6) ; (6,1); (6,2);..; (6,5)}
ΩC = {như trên nhưng trừ (6,6)}
do đó: P(B) = 11/36
P(C) = 10/36 = 5/18
a. Không gian mẫu là 6*6=36
b. A có các kết quả thuận lợi là (1,6) (6,1) (2,5) (5,2) (3,4) (4,3)
c. Biến cố đối của B sẽ là " Không có con xúc xắc nào xuất hiện mặt 6 chấm" Tức là con xúc xắc sẽ trở thành có 5 mặt => 5A2+5
=> P(B)= 1- P(Biến cố đối B)
d. (6,1) (6,2) (6,3) (6,4) (6,5) và ngược lại. Trừ (6,6)
=> có 10
=> P(C)= 10/36= 5/18
a: n(omega)=6
n(A)=1
=>P(A)=1/6
b: B={2;4;6}
=>n(B)=3
=>P(B)=3/6=1/2