K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x^2-2x+1>0 và x^2-4x>0

=>(x>4 hoặc x<0) và (x<>1)

=>x>4 hoặc x<0

10 tháng 11 2021

\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

10 tháng 11 2021

GHI RÕ DÙM MÌNH ĐK CỦA CẢ 3 CÂU LUÔN ĐC KO Á.

16 tháng 7 2021

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

NV
11 tháng 2 2020

\(\left(2x+1\right)\left(x-1\right)>0\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -\frac{1}{2}\end{matrix}\right.\)

\(\left(3x+1\right)\left(x-5\right)\left(-4x+5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{3}\\\frac{5}{4}\le x\le5\end{matrix}\right.\)

\(\frac{x+2}{x-2}\le\frac{3x+1}{2x-1}\Leftrightarrow\frac{3x+1}{2x-1}-\frac{x+2}{x-2}\ge0\)

\(\Leftrightarrow\frac{x^2-8x}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{x\left(x-8\right)}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\\frac{1}{2}< x< 2\\x\ge8\end{matrix}\right.\)

11 tháng 11 2021

1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)

hay x=10

11 tháng 11 2021

sao câu 1 hoài v ạ.Còn câu 2,3 nữa á.

\(\Leftrightarrow\dfrac{-7}{x^2+3x-10}+\dfrac{x+4}{x+5}+\dfrac{x+3}{x-2}+3=0\)

\(\Leftrightarrow-7+x^2+2x-8+x^2+8x+15+3x^2+9x-30=0\)

\(\Leftrightarrow5x^2+19x-30=0\)

hay \(x\in\left\{\dfrac{6}{5}\right\}\)

4 tháng 4 2018

a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)

Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu

mà 1>0

=>x + 2 > 0 <=> x > 2

\(\Rightarrow S=\left\{x|x>2\right\}\)

b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)

Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu

\(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)

\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)

c. Ta có bảng xét dấu:

x -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\)
x+1 - 0 + +
2x+1 - - 0 +
\(\dfrac{2x+1}{x+1}\) + \(//\) - 0 +

4 tháng 4 2018

Bổ xung câu c:

Vậy : \(-1< x\le\dfrac{-1}{2}\)

4 tháng 11 2018

a) Đặt \(t=\left|2x-\dfrac{1}{x}\right|\Leftrightarrow t^2=\left(2x-\dfrac{1}{x}\right)^2=4x^2-4+\dfrac{1}{x^2}\Leftrightarrow t^2+4=4x^2+\dfrac{1}{x^2}\) ĐK \(t\ge0\)

từ có ta có pt theo biến t : \(t^2+4+t-6=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|2x-\dfrac{1}{x}\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{x}=1\\2x-\dfrac{1}{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

17 tháng 11 2022

c: TH1: x>0

Pt sẽ là \(\dfrac{x^2-1}{x\left(x-2\right)}=2\)

=>2x^2-4x=x^2-1

=>x^2-4x+1=0

hay \(x=2\pm\sqrt{3}\)

TH2: x<0

Pt sẽ là \(\dfrac{x^2-1}{-x\left(x-2\right)}=2\)

=>-2x(x-2)=x^2-1

=>-2x^2+4x=x^2-1

=>-3x^2+4x+1=0

hay \(x=\dfrac{2-\sqrt{7}}{3}\)

b:

TH1: 2x^3-x>=0

 \(4x^4+6x^2\left(2x^3-x\right)+1=0\)

=>4x^4+12x^5-6x^3+1=0

\(\Leftrightarrow x\simeq-0.95\left(loại\right)\)

TH2: 2x^3-x<0

Pt sẽ là \(4x^4+6x^2\left(x-2x^3\right)+1=0\)

=>4x^4+6x^3-12x^5+1=0

=>x=0,95(loại)