tìm số có 2 chứ số biết rằng nếu viết thêm 27 vào bên phải số đó thì được số mới hơn số đã cho 4779 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có hai chữ số có dạng: \(\overline{ab}\)
Khi viết thêm vào bên phải số đó hai chữ số: c;d
Thì được số mới có dạng: \(\overline{abcd}\)
Theo bài ra ta có: \(\overline{abcd}\) - \(\overline{ab}\) = 1995
\(\overline{ab}\) \(\times\) 100 + \(\overline{cd}\) - \(\overline{ab}\) = 1995
\(\overline{ab}\) \(\times\) ( 100 - 1) + \(\overline{cd}\) = 1995
\(\overline{ab}\) \(\times\) 99 + \(\overline{cd}\) = 1995
\(\overline{ab}\) \(\times\) 99 = 1995 - \(\overline{cd}\)
\(\overline{ab}\) = \(\dfrac{1995-\overline{cd}}{99}\)
\(\overline{ab}\) = 20 - \(\dfrac{cd-15}{99}\)
⇒ \(\overline{cd}\) - 15 ⋮ 99 vì \(\overline{cd}\) ≤ 99 ⇒ \(\overline{cd}\) = 15;
\(\overline{ab}\) = 20
Vậy số có hai chữ số ban đầu là 20; hai chữ số viết thêm là: 15
giải
gọi số có 2 chữ số là ab
nếu thêm chữ số 3 vào bên phải thì được ab3.
theo bài ra ta có: ab3 - ab =102
=> b =1,a=1
vậy số đó là 11
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Ta có:
$\overline{ab2}=405+\overline{ab}$
$\overline{ab}\times 10+2=405+\overline{ab}$
$\overline{ab}\times 10-\overline{ab}=405-2$
$\overline{ab}\times 9=403$
$\overline{ab}=403:9$ không phải số tự nhiên.
Đề có vẻ sai. Bạn xem lại.
gọi số cần tìm là a
số mới là a3
ta có
a + 750 = a3
a + 750 = 10 * a - a
9 * a = 747
a = 747 : 9 = 83
Gọi số cần tìm là \(\overline{ab3}\)
Ta có :
\(\overline{ab32}-\overline{ab3}=4079\\ \overline{ab3}\cdot10+2-\overline{ab3}=4079\\ \overline{ab3}\cdot\left(10-1\right)=4079-2\\ \overline{ab3}\cdot9=4077\\ \overline{ab3}=4077:9\\ \overline{ab3}=453\)
Vậy số cần tìm là 453
a,
Gọi số cần tìm là ab
=> ab = 3b
=> 10a + b = 3b
=> 10a = 2b
=> 5a = b
=> b \(⋮\)5 ; b là chữ số nên có 1 chữ số
=> b = 5; a = 1
Vậy ab = 15
b,
CÁCH 1:
Gọi số cần tìm là ab
=> ab3 = ab + 93
=> 100a + 10b + 3 = 10a + b + 93
=> 90a + 9b = 90
Mà a,b có 1 chữ số; a\(\ne0\)
Nếu a > 1 => 90a + 9b = 180 + 9b > 90 [loại]
=> a = 1 => b = 0
Vậy ab = 10
CÁCH 2:
Khi ta thêm số 3 vào bên phải một số thì số đó tăng 9 lần và 3 đơn vị.
Vậy số ban đầu là:
[93 - 3]: 9 = 10
c,
CÁCH 1:
Gọi số cần tìm là ab
=> ab4 = ab + 112
=> 100a + 10b + 4 = 10a + b + 112
=> 90a + 9b = 108
Mà a,b có 1 chữ số; a\(\ne0\)
=> nếu a > 1 => 90a + 9b = 180 + 9b > 108 [loại]
=> a = 1 => b = [108 - 90.1]: 9 = 2
Vậy ab = 12
CÁCH 2 TƯƠNG TỰ BÀI TRÊN
Gọi 2 số đó là ab. Ta có: ab27 - 4779 = ab
=> ab = 48 ( bạn đặt cột dọc ra tính sẽ thấy liền!^^)