P= -5x4+3x3+7x2+x-3 và Q=5x4 - 4x3 - x2 +3x +3, p+Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P + Q = (-5x4 +3x3 + 7x2 + x – 3) + (5x4 – 4x3 – x2 + 3x + 3)
= -5x4 +3x3 + 7x2 + x – 3 + 5x4 – 4x3 – x2 + 3x + 3
= (-5x4 + 5x4 ) + (3x3 – 4x3 ) + (7x2 – x2 ) + (x + 3x) + (-3 + 3)
= 0 + (-x3) + 6x2 +4x
= -x3 + 6x2 +4x
P – Q = (-5x4 +3x3 + 7x2 + x – 3) - (5x4 – 4x3 – x2 + 3x + 3)
= -5x4 +3x3 + 7x2 + x – 3 - 5x4 + 4x3 + x2 - 3x - 3
= (-5x4 - 5x4 ) + (3x3 + 4x3 ) + (7x2 + x2 ) + (x - 3x) + (-3 - 3)
= -10x4 + 7x3 + 8x2 + (-2x) + (-6)
= -10x4 + 7x3 + 8x2 – 2x – 6
a) Đa thức P + Q có bậc là 3
Đa thức P – Q có bậc là 4
b) +) Tại x = 1 thì P + Q = - 13 + 6. 12 + 4.1 = 9
P – Q = -10. 14 + 7.13 + 8.12 – 2. 1 – 6 = -3
+) Tại x = - 1 thì P + Q = - (-1)3 + 6. (-1)2 + 4.(-1) = -(-1) + 6.1 - 4 = 3
P – Q = -10. (-1)4 + 7.(-1)3 + 8.(-1)2 – 2. (-1) – 6 = -10 . 1 + 7.(-1) + 8 + 2 – 6 = -13
c) Đa thức P + Q có nghiệm là x = 0 vì đa thức này có hệ số tự do bằng 0.
`P(x)=x^2+5x^4-3x^2+x^2+4x^4+3x^3-x+5`
`=(5x^4+4x^4)+3x^3+(x^2-3x^2+x^2)-x+5`
`=9x^4+3x^3-x^2-x-5`
`Q(x)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1`
`=-x^4+(4x^3-5x^3)-(x^2+x^2)+(x+3x)-1`
`=-x^4-x^3+4x-1`
`P(x)+Q(x)=9x^4+3x^3-x^2-x-5-x^4-x^3+4x-1`
`=(9x^4-x^4)+(3x^3-x^3)-x^2-(x-4x)-(5+1)`
`=8x^4+2x^3-x^2-5x-6`
`P(x)-Q(x)=9x^4+3x^3-x^2-x-5+x^4+x^3-4x+1`
`=(9x^4+x^4)+(3x^3+x^3)-x^2-(x+4x)-(5-1)`
`=10x^4+4x^3-x^2-5x-4`
a) Thu gọn và sắp xếp:
\(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)
\(P\left(x\right)=\left(5x^4+4x^4\right)-\left(3x^3-3x^3\right)+\left(x^2+x^2\right)-x+5\)
\(P\left(x\right)=9x^4+2x^2-x+5\)
\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)
\(Q\left(x\right)=x^4-\left(5x^3-4x^3\right)-\left(x^2+x^2\right)+\left(x+3x\right)-1\)
\(Q=x^4-x^3-2x^2+4x-1\)
b) \(P\left(x\right)+Q\left(x\right)\)
\(=\left(9x^4+2x^2-x+5\right)+\left(x^4-x^3-2x^2+4x-1\right)\)
\(=9x^4+2x^2-x+5+x^4-x^3-2x^2+4x-1\)
\(=\left(9x^4+x^4\right)-x^3+\left(2x^2-2x^2\right)-\left(x-4x\right)+\left(5-1\right)\)
\(=10x^4-x^3+3x+4\)
\(P\left(x\right)-Q\left(x\right)\)
\(=\left(9x^4+2x^2-x+5\right)-\left(x^4-x^3-2x^2+4x-1\right)\)
\(=9x^4+2x^2-x+5-x^4+x^3+2x^2-4x+1\)
\(=\left(9x^4-x^4\right)+x^3+\left(2x^2+2x^2\right)-\left(x+4x\right)+\left(5-1\right)\)
\(=8x^4+x^3+4x^2-5x+4\)
a.Mik làm rồi nhé!
\(b.P\left(x\right)+Q\left(x\right)=\left(2x^2-x+5\right)+\left(-2x^2+4x-1\right)\\ =2x^2-x+5-2x^2+4x-1\\ =3x+4\\ ------\\ P\left(x\right)-Q\left(x\right)=\left(2x^2-x+5\right)-\left(-2x^2+4x-1\right)\\ =2x^2-x+5+2x^2-4x+1\\ =4x^2-5x+6\)
\(c.\)nghiệm của đa thức P(x) + Q(x)
\(3x+4=0\\ \Leftrightarrow3x=-4\\ \Leftrightarrow x=\dfrac{-4}{3}\)
\(\Leftrightarrow\)vậy...
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)
`@` `\text {dnammv}`
`a,`
`M(x)=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2`
`= (4x^4+5x^4)+(3x^3-3x^3)+(x^2+x^2)-x`
`= 9x^4+2x^2-x`
`N(x)=-x^2-x^4+4x^3-x^2-5x^3+3x+1+x`
`=-x^4+(4x^3-5x^3)+(-x^2-x^2)+(3x+x)+1`
`= -x^4-x^3-2x^2+4x+1`
`b,`
`M(x)+N(x)=(9x^4+2x^2-x)+(-x^4-x^3-2x^2+4x+1)`
`= 9x^4+2x^2-x-x^4-x^3-2x^2+4x+1`
`= (9x^4-x^4)-x^3+(2x^2-2x^2)+(-x+4x)+1`
`= 8x^4-x^3+3x+1`
`N(x)-M(x)=(-x^4-x^3-2x^2+4x+1)-(9x^4+2x^2-x)`
`= -x^4-x^3-2x^2+4x+1-9x^4-2x^2+x`
`= (-x^4-9x^4)-x^3+(-2x^2-2x^2)+(4x+x)+1`
`= -10x^4-x^3-4x^2+5x+1`
`c,`
`P(x)=M(x)+N(x)`
`P(x)= 8x^4-x^3+3x+1`
Thay `x=-2`
`P(-2)= 8*(-2)^4-(-2)^3+3*(-2)+1`
`= 8*16+8-6+1`
`= 136-6+1=131`
a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)
\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)
\(=9x^4+3x^2-x-6\)
Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)
\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)
\(=-x^4-x^3-3x^2+4x+5\)
c) Ta có: M(x)+N(x)
\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)
\(=8x^4-x^3+3x-1\)