K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2023

loading...  

NV
9 tháng 1

a.

Xếp 4 bạn nữ cạnh nhau: \(4!\) cách

Coi 4 bạn nữ là 1 bạn, xếp với 6 bạn nam: \(7!\) cách

Theo quy tắc nhân ta có: \(4!.7!\) cách

b.

Xếp 6 bạn nam: \(6!\) cách

6 bạn nam tạo thành 7 khe trống, xếp 4 nữ vào 7 khe trống này: \(C_7^4\) cách

\(\Rightarrow6!.C_7^4\) cách

c. Do có 6 nam và 4 nữ nên ko thể tồn tại cách xếp xen kẽ nam nữ (luôn có ít nhất 2 nam đứng cạnh nhau)

d. 

Xếp 4 nữ cạnh nhau: \(4!\) cách

Xếp 6 nam cạnh nhau: \(6!\) cách

Hoán vị nhóm nam và nữ: \(2!\) cách

\(\Rightarrow4!.6!.2!\) cách

8 tháng 9 2019

Số cách chọn 2 nam đứng ở đầu và cuối là  .

 Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là  .

 Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:

Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:

Chọn D.

11 tháng 11 2019

Do yêu cầu xếp xen kẽ nên chỉ có thể xếp theo phương án: người đầu tiên là nam, sau đó xen kẽ nam, nữ và người xếp cuối cùng cũng sẽ là nam.

Số cách xếp 20 bạn nam thành một hàng là 20!. Khi đó giữa các bạn nam có 19 khoảng trống để xếp 19 bạn nữ, có 19! cách xếp các bạn nữ.

Theo quy tắc nhân ta được số cách xếp thỏa mãn là 20!.19!.

  Chọn C.

2 tháng 9 2019

- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!*5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.

Chọn A

4 tháng 8 2017

Ta xét hai trường hợp:

TH1. Bạn nam đứng đầu hàng

Xếp 4 bạn nam vào 4 vị trí 1;3;5;7  có 4!=24 cách xếp 4 bạn nam

Có 4!=24 cách xếp 4 bạn nữ vào 4 vị trí còn lại.

 Khi đó số cách sắp xếp là cách.

TH2. Bạn nữ đứng đầu hàng, tương tự TH1, suy ra có 242 cách sắp xếp.

Vậy có  2.242 cách sắp xếp thỏa mãn yêu cầu bài toán.

Chọn D.

20 tháng 3 2018

Số cách chọn 2 bạn nữ xếp ở vị trí đầu hàng và cuối hàng là:  (ở đây ta xem cách xếp 1 bạn nữ A ở đầu hàng, bạn nữ B ở cuối hàng với cách xếp bạn nữ A ở cuối hàng, bạn nữ B ở đầu hàng là khác nhau).

Lúc này, còn lại 3 bạn nữ và 6 bạn nam, số cách xếp 9 người này vào 1 hàng là: 9!.

Vậy số cách xếp thỏa yêu cầu đề là:  

Chọn C

9 tháng 1 2017

Chọn A

Ta đánh số các vị trí từ 1 đến 8.

Số phần tử không gian mẫu là 

Gọi A là biến cố: “xếp được tám bạn thành hàng dọc thỏa mãn các điều kiện: đầu hàng và cuối hàng đều là nam và giữa hai bạn nam gần nhau có ít nhất một bạn nữ, đồng thời bạn Quân và bạn Lan không đứng cạnh nhau”.

TH1: Quân đứng vị trí 1 hoặc 8 => có 2 cách

Chọn một trong 3 bạn nam xếp vào vị trí 8 hoặc 1 còn lại => có 3 cách.

Xếp 2 bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau

=> có 6 cách

Xếp vị trí bạn Lan có 3 cách.

Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.

=> TH này có: 2.3.6.3.3! = 648 cách

TH2: Chọn 2 bạn nam ( khác Quân) đứng vào 2 vị trí 1 hoặc 8 có A 3 2  cách.

Xếp Quân và  bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau => có 6 cách

Xếp vị trí bạn Lan có 2 cách.

Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.

=> TH này có: 

Vậy xác suất của biến cố A là