Cho biểu thức A=3/4+8/9+15/16+...+9999/10000.Chứng minh rằng A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(1-\frac{1}{4})+(1-\frac{1}{9})+(1-\frac{1}{16})+....+(1-\frac{1}{10000})$
$=(1+1+...+1)-(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+....+\frac{1}{10000})$
$=99-(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+....+\frac{1}{10000})< 99$
Tham khảo :
3.98.1615.....100009999
=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{99.101}{100.100}=2.21.3.3.32.4.4.43.5.....100.10099.101
=\dfrac{\left(1.2.3.....99\right)}{\left(2.3.4.....100\right)}.\dfrac{\left(3.4.5.....101\right)}{\left(2.3.4.....100\right)}=(2.3.4.....100)(1.2.3.....99).(2.3.4.....100)(3.4.5.....101)
=\dfrac{1}{100}.\dfrac{101}{2}=\dfrac{101}{200}=1001.2101=200101
Ta có:
\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)
Áp dụng:
\(C=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+\dfrac{4^2-1}{4^2}+...+\dfrac{100^2-1}{100^2}\)
\(C>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+1-\dfrac{1}{3.4}+...+1-\dfrac{1}{99.100}\)
\(C>99-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(C>99-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(C>99-\left(1-\dfrac{1}{100}\right)\)
\(C>98+\dfrac{1}{100}>98\) (đpcm)
Ta có: \(A=\left\{\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{9999}{10000}\right\}\Rightarrow99\)số
\(A=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+...+\left(1-\dfrac{1}{100000}\right)\)
\(A=\left\{1+1+1+...+1\right\}\Rightarrow99\)số \(-\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{100000}=99-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{10000}\right)\)
Ta có: \(4=2^2>1.2\Rightarrow\dfrac{1}{4}< \dfrac{1}{1.2}\Leftrightarrow\dfrac{1}{4}< \dfrac{1}{1}-\dfrac{1}{2}\)
Tương tự: \(\dfrac{1}{9}< \dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{16}< \dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{10000}< \dfrac{1}{99}-\dfrac{1}{100}\)
Cộng theo vế ta được: \(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{10000}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrow A=99-\left(\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{16}+...+\dfrac{1}{10000}\right)>99-1=98\)
Vậy \(A>98\)
nhận xét: với n là số tự nhiên, ta có (n-1)(n+1)=n(n+1)-(n+1)=n2+n-n-1=n2-1
do đó: 1.3=22-1
2.4=32-1
........
99.101=1002-1
=> \(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{100^2-1}{100^2}\)
\(=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)
\(=\left(\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Ta có:
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}<\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}<\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=>\(\frac{1}{2}-\frac{1}{101}<\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1-\frac{1}{100}\)
\(\frac{99}{202}<\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{100}{101}\)
=>\(99-\frac{99}{202}<99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)<99-\frac{100}{101}\)
=>98+1-(99/202)<A<99-(100/101)
=>98+(103/202)<A<99-(100/101)
Hay 98<A<99
Vậy A không phải là một số tự nhiên
đề đúng rồi
\(C=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(C=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(C=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
\(C=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)
đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow A< 1\)
Vì \(A< 1\)nên \(B=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)>99-1=98\)
= 3/22 + 8/32 + 15/42 + ... + 9999/1002
= 1.3/2.2 + 2.4/3.3 + 3.5/4.4 + .... + 99.101/100.100
\(=\frac{1.3.2.4.3.5.4.6...99.101}{2^2.3^2....100^2}=\frac{1.2.3^2.4^2...99^2.100.101}{2^2.3^2....100^2}=\frac{1.2.101}{2^2.100}=\frac{101}{200}\)
chịu mẹ kiếp toán 7 cho vào đề kiểm tra toán 6 ai mà lm dc
=1-1/4+1-1/9+1-1/16+...+1-1/10000
=(1+1+1+...+1)+(-1/4-1/9-1/16-...-1/10000)
=99+(-1/4-1/9-1/16-...-1/10000)
Vì 99+(-1/4-1/9-1/16-...-1/10000)>98
=>C>98
Vây C>98
Đề thiếu. Bạn xem lại đề.