bài 4: cho tam giác ABC cân tại A (góc A nhỏ hơn 90 độ). Kẻ BD vuông góc với AC tại D và CE vuông góc AB tại E .
a, chúng minh tam giác ABD= tam giác ACE, từ đó suy ra góc ABD= góc ACE
b, gọi H là giao điểm của BD và CE , chứng minh tam giác BHC là tam giác cân so sánh HB và HD
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD