Biểu thức (x+7) ^2 + 2023 giá trị nhỏ nhất khi nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
\(a=2022.\left|x^2+1\right|+2023\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)
mà \(\left(x^2+1\right)\ge1,\forall x\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)
\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)
A = x - 6√x + 2023
= x - 2.√x.3 + 9 + 2014
= (√x - 3)² + 2014
Do (√x - 3)² ≥ 0 với mọi x ∈ R
⇒ (√x - 3)² + 2014 ≥ 2014 với mọi x ∈ R
Vậy GTNN của A là 2014 khi x = 9
Hướng dẫn:
\(A=\left|2x-2\right|+\left|2x-2023\right|\)
\(=\left|2x-2\right|+\left|2023-2x\right|\)
\(\ge\left|2x-2+2023-2x\right|=2021\)
Vậy GTNN của A là 2021, đạt được khi và chỉ khi \(\left(2x-2\right)\left(2023-2x\right)\ge0\)\(\Leftrightarrow1\le x\le\dfrac{2023}{2}\)
Vì 1003 < 999, nên phần tử trong dấu chia sẽ nhỏ hơn 1
Vậy giá trị nhỏ nhất của biểu thức A làA = 2023 - 1003:999 = 2023 - 1 = 2022.
(x+7)^2+2023>=2023 với mọi x
Dấu = xảy ra khi x=-7