giải pt sau
căn (4- căn(4+x))=x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)(1)
Trường hợp 1: x<1
(1) trở thành 1-x+2-x=3
=>3-2x=3
=>x=0(nhận)
Trường hợp 2: 1<=x<2
(1) trở thành x-1+2-x=3
=>1=3(loại)
Trường hợp 3: x>=2
(1) trở thành x-1+x-2=3
=>2x-3=3
=>2x=6
hay x=3(nhận)
\(\sqrt{9.\left(x-1\right)^2}-12=0\)
=> 3.(x - 1) - 12 = 0
=> 3x - 15 = 0
=> 3x = 15
=> x = 5
b) \(\sqrt{4.\left(3-x\right)}=16\) (ĐKXĐ: x ≤ 3)
\(\Rightarrow\sqrt{3-x}=8\)
=> 3 - x = 64
=> x = -61
Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
hay x=3
\(\sqrt{x-1}+\sqrt{x-4}=x^2-22\)(ĐKXĐ:x>=căn 22)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-4}-1=x^2-25\)
\(\Leftrightarrow\frac{x-1-4}{\sqrt{x-1}+2}-\frac{x-4-1}{\sqrt{x-4}+1}=\left(x+5\right)\left(x-5\right)\)
\(\Leftrightarrow\frac{x-5}{\sqrt{x-1}+2}-\frac{x-5}{\sqrt{x-4}+1}=\left(x+5\right)\left(x-5\right)\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{x-1}+2}-\frac{1}{\sqrt{x-4}+1}-x-5\right)=0\)
Vì \(x\ge\sqrt{22}\)nên \(\frac{1}{\sqrt{x-1}+2}-\frac{1}{\sqrt{x-4}+1}-x-5< 0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\)