K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2023

ɜː ko bt giải

3 tháng 1 2019

tam giác ABC  tam giác cân vì có góc b và góc c bằng nhau vì a+b+c=180 độ

=> c=180-55-70=55

=>b=c

3 tháng 1 2019

\(\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-70^0-55^0=55^0\)

Ta thấy \(\widehat{B}=\widehat{C}\left(=55^0\right)\)

Nên tam giác ABC cân tại A

27 tháng 12 2022

Vì tam giác ABC cân A nên góc B = góc C = 70 

Góc A + góc B + góc C = 180° ( tổng 3 góc trong tam giác) 

=> Góc A = 180 - 70 x 2 = 40°

24 tháng 7 2021

undefined

24 tháng 7 2021

Vì tổng 3 góc của tam giác luôn bằng 1800 nên góc C là

1800-700-500=600

Theo quan hệ giữa góc và cạnh đối diện:

\(\widehat{A}>\widehat{B}>\widehat{C}\) nên cạnh AC>BC>AB

 

NV
5 tháng 8 2021

\(A=180^0-\left(B+C\right)=70^0\)

\(\Rightarrow A=B\Rightarrow\Delta ABC\) cân tại C

\(\Rightarrow BC=AC=10\left(cm\right)\)

Kẻ đường cao CH \(\Rightarrow\) H đồng thời là trung điểm AB

Trong tam giác vuông ACH:

\(cosA=\dfrac{AH}{AC}\Rightarrow AH=AC.cosA=10.cos70^0\approx3,42\left(cm\right)\)

\(AB=2AH\approx6,84\left(cm\right)\)

b. Cũng trong tam giác vuông ACH:

\(sinA=\dfrac{CH}{AC}\Rightarrow CH=AC.sinA=10.sin70^0\approx9,4\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}CH.AB\approx32,15\left(cm^2\right)\)

NV
5 tháng 8 2021

undefined

12 tháng 5 2021

* Theo mình thì phần a) Góc A = 90 độ sẽ hợp lý hơn chứ. Vậy nên mình sẽ làm theo cả hai góc A 90 độ và 80 độ nhé ( Nhưng bài của mình phần b) sẽ theo góc A = 90 độ )

a)

Góc A = 80 độ thì sẽ có thể tam giác ABC là tam giác cân, tam giác ⊥ tại B hoặc C, tam giác ABC là tam giác tù hoặc tam giác nhọn

Góc A = 90 độ thì tam giác ABC là tam giác vuông tại A

b) 

Theo phần a), ta có: Tam giác ABC cân tại A

=> Góc B = góc C = ( 180 độ - 70 độ ) : 2 = 55 độ

1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)

\(\Leftrightarrow48,68-AC^2=13,57\)

hay \(AC=5,93\left(cm\right)\)

NV
20 tháng 7 2021

undefined

NV
20 tháng 7 2021

Kẻ đường cao AH ứng với BC, đặt \(CH=x\Rightarrow BH=4-x\)

Trong tam giác vuông ABH

\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=\left(4-x\right).tan70^0\)

Trong tam giác vuông ACH: 

\(tanC=\dfrac{AH}{CH}\Rightarrow AH=CH.tanC=x.tan45^0=x\)

\(\Rightarrow\left(4-x\right)tan70^0=x\)

\(\Leftrightarrow\left(1+tan70^0\right)x=4.tan70^0\)

\(\Leftrightarrow x=\dfrac{4tan70^0}{1+tan70^0}\approx2,2\left(cm\right)\)

\(\Rightarrow CH=AH=2,2\left(cm\right)\)

\(AC=\sqrt{CH^2+AH^2}=AH\sqrt{2}\approx3,1\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.2,2.4=4,4\left(cm^2\right)\)