K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2023

C.120

24 tháng 7 2018

Đáp án là C

Mỗi cách sắp xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của 6 phần tử. Vậy số cách sáp xếp là 6!

25 tháng 7 2019

18 tháng 4 2018

a) Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách chọn hai quyển từ tầng thứ k, k = 1, 2, 3, 4

Vậy có tất cả Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách chọn.

b) Tương tự, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách chọn.

18 tháng 5 2017

a) \(C^2_{10}\) cách chọn hai quyển từ tầng \(k,k=1,2,3,4\). Vậy có tất cả \(\left(C^2_{10}\right)^4\) cách chọn

b) Tương tự, có \(\left(C^8_{10}\right)^4=\left(C^2_{10}\right)^4\) cách chọn

15 tháng 5 2018

Để sắp xếp số sách đó lên kệ và thỏa mãn đầu bài ta cần làm hai công việc sau:

Đầu tiên; đặt 3 nhóm sách ( toán; văn; anh) lên kệ có 3!=6 cách.

Sau đó; trong mỗi nhóm ta có thể thay đổi cách xếp các quyển sách với nhau:

Nhóm toán có 4!=24 cách.

Nhóm văn có 2!=2 cách.

Nhóm anh có 6!=720 cách.

Theo quy tắc nhân có :  6.24.2.720=207360 cách.

Chọn B.

Số cách lấy ra là:

10+8+7=25 cách

11 tháng 11 2017

Chọn D

Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu 

Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.

+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có  11 ! 2 ! cách

+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3  cách.

Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra  

Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:

9 tháng 3 2019

Chọn D

Giá có 3 ngăn như vậy có 2 vách ngăn, coi 2 vách ngăn này là 2 quyển sách giống nhau. Khi đó

bài toán trở thành xếp 14 quyển sách (2 quyển “VÁCH NGĂN” giống nhau) vào 14 vị trí. Đầu

tiên chọn 2 vị trị trí xếp vách ngăn là  C 14 2 , 12 vị trí còn lại xếp 12 quyển sách là 12!. Vậy không gian mẫu là  C 14 2 .12!.

Gọi A là biến cố “không có bất kì hai quyển sách toán nào đứng cạnh nhau”. Ta tìm số cách xếp thỏa mãn A

Đầu tiên ta xếp 11 quyển sách gồm 4 quyển lí, 5 quyển hóa và 2 quyển “VÁCH NGĂN”. Cũng

như trên, ta chọn 2 vị trí xếp 2 quyển “VÁCH NGĂN” trước là  C 11 2 sau đó xếp 9 quyển còn lại là 9!. Vậy số cách xếp 11 quyển này là  C 11 2 .9!. Sau khi xếp xong 11 quyển này thì sẽ có sẽ có 12 khe. Ta chọn 3 khe để xếp 3 quyển toán còn lại, là A 12 3 .

Vậy số cách thỏa mãn biến cố A là . C 11 2 .9!. A 12 3

Vậy .

NV
20 tháng 4 2023

Xếp 5 quyển Toán cạnh nhau: \(5!\) cách

Xếp 5 quyển Lý cạnh nhau: \(4!\) cách 

Xếp 3 quyển Văn cạnh nhau: \(3!\) cách

Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách

Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn