cho tam giác ABA có AB<AC. Trên cạnh AC lấy điểm H sao cho AH=AB. Tia phân giác của góc A cắt BC ở e. Vẽ tia Bx là tia đối của tia BA. a)CMR: tam giác ABE= tam giác AHE b) So sánh các độ dài BE và EC giải giúp mình nha cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
hình tự vẽ
a)Vì AD là tpg của ^BAC
=>^BAD = ^CAD = ^BAC/2
Xét tam giác ABD và tam giác AED có:
AD:cạnh chung
^BAD=^CAD(cmt)
AB=AE(gt)
=>tam giác ABD=tam giác AED (c.g.c)
=>BD=BE (cặp cạnh t.ư)
b)Vì tam giác ABD=tam giác AED(cmt)
=>^ABD=^AED (cặp góc t.ư)
Ta có:^ABD+^KBD=1800 (kề bù)
=>^KBD=1800-^ABD (1)
^AED+^CED=1800 (kề bù)
=>^CED=1800-^AED(2)
Từ (1);(2);có ^ABD=^AED(cmt)
=>^KBD=^CED
Xét tam giác DBK và tam giác DEC có:
BD=BE(cmt
^KBD=^CED(cmt)
^BDK=^EDC (2 góc đđ)
=>tam giác DBK=tam giác DEC (g.c.g)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: BD=ED
b: Xét ΔDBK và ΔDEC có
\(\widehat{DBK}=\widehat{DEC}\)
BD=ED
\(\widehat{BDK}=\widehat{EDC}\)
Do đó: ΔDBK=ΔDEC
c: Ta có: ΔDBK=ΔDEC
nên BK=EC
Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE
và BK=EC
nên AK=AC
hay ΔAKC cân tại A
bạn tự vẽ hình nhé
vì AD là phân giác của \(\widehat{BAC}\) ⇒ \(\widehat{BAD}=\widehat{MAD}\) =\(\dfrac{\widehat{BAC}}{2}\)
a) xét ΔABD và ΔAMD, có:
AM=AB (gt)
\(\widehat{BAD}=\widehat{MAD}\) (cmt)
AD chung
⇒ ΔABD = ΔAMD (c.g.c) (đpcm)
b) Từ ΔABD = ΔAMD (cmt)
⇒ BD=DM( 2 cạnh t/ứng) (đpcm)
\(\widehat{ABD}=\widehat{AMD}\) (2 góc t/ứng)(đpcm)
c) phần này có lẽ đề bài sai , phải là c/m Δ BDN =ΔMDC mới đúng.
vì \(\widehat{ABD}=\widehat{AMD}\) (cmt) ⇒ \(\widehat{DBN}=\widehat{DMC}\) ( do \(\widehat{ABD}\) và \(\widehat{DBN}\) là 2 góc kề bù; \(\widehat{AMD}\) và \(\widehat{DMC}\)là 2 góc kề bù)
vì \(\widehat{BDN}\) và \(\widehat{MDC}\) là 2 góc đối đỉnh⇒ \(\widehat{BDN}\) =\(\widehat{MDC}\)
Xét Δ BDN và ΔMDC, có:
\(\widehat{BDN}\) =\(\widehat{MDC}\)(cmt)
BD=DM (cmt)
\(\widehat{DBN}=\widehat{DMC}\) (cmt)
⇒Δ BDN = ΔMDC (g.c.g) (đpcm)
d) từ Δ BDN = ΔMDC (cmt) ⇒ BN=MC
mà AB=AM ⇒ AB+BN =AM+MC
⇔AN=AC.⇒ Δ ANC cân tại A.
và AB=AM(gt) ⇒ ΔABM cân tại A
mà AD là phân giác của \(\widehat{BAM}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔABM⇔ AD ⊥ BM(đpcm)
Vì Δ ANC cân tại A (cmt)
AD là phân giác của \(\widehat{NAC}\) ⇒ AD vừa là phân giác vừa là đường cao của ΔACN.⇔ AD⊥CN.
Mà AD⊥ BM⇒ BM//CN(đpcm)
a: Ta có: ΔIAB cân tại I
mà IM là đường trung tuyến ứng với cạnh đáy AB
nên IM là đường cao ứng với cạnh AB
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
Để DE\(\perp\)AC thì \(\widehat{AED}=90^0\)
=>\(\widehat{ABD}=\widehat{ABC}=90^0\)
c: Xét ΔAEK và ΔABC có
\(\widehat{AEK}=\widehat{ABC}\)
AE=AB
\(\widehat{KAE}\) chung
Do đó: ΔAEK=ΔABC
d: Ta có: ΔAEK=ΔABC
=>EK=BC và AK=AC
Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE và AK=AC
nên BK=EC
Ta có: DE+DK=EK
DB+DC=BC
mà EK=BC và DE=DB
nên DK=DC
Xét ΔKBE và ΔCEB có
KB=CE
BE chung
KE=CB
Do đó:ΔKBE=ΔCEB
a, Xét Δ ADB và Δ ADE có:
AD chung
góc BAD = góc EAD
AB = AE
⇛Δ ADB =Δ ADE(c-g-c)
a: Xét ΔADB và ΔADE có
AD chung
góc BAD=góc EAD
AB=AE
=>ΔADB=ΔADE
=>góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AC=AF
a) Xét ΔABE & ΔAHE có:
- AB = AH (giả thuyết); AE là cạnh chung; \(\widehat{BAE}=\widehat{HAE}\) (vì AE là tia phân giác góc BAC)
Suy ra ΔABE = ΔAHE (c.g.c)