Chi biết \(\dfrac{a}{c}=\dfrac{b}{d}=k\) . Tính giá trị tỉ số \(\dfrac{c.a^2+d.b^2}{c^3+d^3}\) theo k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Thay \(x=-12\) vào \(\left|x-2\right|\)
\(\Rightarrow\left|-12-2\right|=\left|-14\right|=14\)
Câu 2: Chọn phương án A.
Câu 3:
\(\left|-120\right|+\left|20\right|=120+20=140\)
Ta có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)
\(=\dfrac{a+b+c+2d}{d}-1\)
⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Nếu a+b+c+d=0
⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)
Thay vào M, ta có:
\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)
Nếu a+b+c+d ≠0
⇒ \(a=b=c=d\)
Thay vào M, ta có
\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)
a) đk: \(a>0;a\ne1\)
b) Xét K = \(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
= \(\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
= \(\dfrac{\sqrt{a}+1}{\sqrt{a}}:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
= \(\dfrac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)\)
= \(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
Xét \(a=3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)
<=> \(\sqrt{a}=1+\sqrt{2}\)
<=> K = \(\dfrac{\left(\sqrt{2}+2\right)\sqrt{2}}{\sqrt{2}+1}=2\)
c) Đẻ K < 0
<=> \(\dfrac{a-1}{\sqrt{a}}< 0\)
Mà \(\sqrt{a}>0\)
<=> a < 1
<=> 0 < a < 1
Vì `x` tỉ lệ thuận với `y` theo hệ số tỉ lệ `k`
`-> x=k*y`
Thay `x=12, y=-3`
`12=k*-3`
`-> k=12 \div (-3)`
`-> k=-4`
Vậy, hệ số tỉ lệ `k=-4.`
Xét các đáp án trên `-> D.`
$\href{https://hoc24.vn/vip/14874167551162}{\text{_Duy Nam_}}$
\(\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}\)
TH1: \(a+b+c+d=0\)
\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{-c}{c}=-1\)
TH2: \(a+b+c+d\ne0\)
\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
a/c=b/d=k
=>a=ck; b=dk
=>\(\dfrac{c\cdot a^2+d\cdot b^2}{c^3+d^3}\)
\(=\dfrac{c\cdot c^2k^2+d\cdot d^2k^2}{c^3+d^3}=k^2\)
đặt \(\dfrac{a}{c}\) =\(\dfrac{b}{d}=k\)
\(\Rightarrow a=c\times k\)
\(b=d\times k\)
\(\dfrac{c.\left(c.k\right)^2+d.\left(d.k\right)^2}{c^3+d^3}\)
=\(\dfrac{c^3.k^2+d^3.k^2}{c^3+d^3}\)
=\(\dfrac{k^2\left(c^3+d^3\right)}{1\left(c^3+d^3\right)}\)=k2