Bài 6: Cho ABC có ba góc nhọn (AB < AC), hai đường cao AD, BE cắt nhau tại H. Chứng minh: ADC BEC, suy ra: CA.CE = CB. CD Chứng minh: Tia CH cắt cạnh AB tại F, cắt DE tại I. Chứng minh: IH. CF = HF. IC. Cho ED = AB, AD = 8cm, BC = 12cm. Tính diện tích CDE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc BFC=góc BEC=90 độ
=>BFEC nộitiếp
Tâm là trung điểm của BC
2: góc EFC=góc DAC
góc DFC=góc EBC
góc DAC=góc EBC
=>góc EFC=góc DFC
=>FC là phân giác của góc EFD
BFEC nội tiếp
=>góc AFE=góc ACB
mà góc A chung
nên ΔAFE đồng dạng với ΔACB
=>AF/AC=AE/AB
=>AF*AB=AC*AE
a) \(\Delta ABE,\Delta ACF\) có \(\widehat{A}\) chung và \(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\) nên suy ra \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\).
b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó suy ra \(\Delta AEF~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)
c) Xét tam giác AEF có \(C\in AE,B\in AF,K\in EF\) và \(K,B,C\) thẳng hàng nên áp dụng định lý Menelaus, ta có \(\dfrac{KF}{KE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (1).
Mặt khác, cũng trong tam giác AEF, có \(C\in AE,B\in AF,I\in EF\) và AI, EB, FC đồng quy nên theo định lý Ceva, \(\dfrac{IF}{IE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (2).
Từ (1) và (2), suy ra \(\dfrac{KF}{KE}=\dfrac{IF}{IE}\Leftrightarrow KF.IE=KE.IF\)
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HE*HB
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
mà góc AFE+góc BFE=180 độ
nên góc AFE=góc ACB
c: Xét ΔKFB và ΔKCE có
góc KFB=góc KCE(=góc AFE)
góc K chung
=>ΔKFB đồng dạng với ΔKCE
=>KF/KC=KB/KE
=>KF*KE=KB*KC
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HE*HB
b: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
mà góc AFE+góc BFE=180 độ
nên góc AFE=góc ACB
c: Xét ΔKFB và ΔKCE có
góc KFB=góc KCE(=góc AFE)
góc K chung
=>ΔKFB đồng dạng với ΔKCE
=>KF/KC=KB/KE
=>KF*KE=KB*KC
a) Xét ΔAEH vuông tại E và ΔBDH vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)(hai góc đối đỉnh)
Do đó: ΔAEH\(\sim\)ΔBDH(g-g)
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
b: Xét ΔAEB và ΔAFC có
AE=AF
\(\widehat{BAE}\) chung
AB=AC
Do đó: ΔAEB=ΔAFC
Suy ra: \(\widehat{AEB}=\widehat{AFC}=90^0\)
hay CF\(\perp\)AB
a: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
góc DCA chung
=>ΔCEB đồng dạng với ΔCDA
=>CE/CD=CB/CA
=>CE*CA=CD*CB; CE/CB=CD/CA
c: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot12=48\left(cm^2\right)\)
Xét ΔCED và ΔCBA có
CE/CB=CD/CA
góc C chung
=>ΔCED đồng dạng với ΔCBA
=>\(\dfrac{S_{CDE}}{S_{CBA}}=\left(\dfrac{DE}{AB}\right)^2=1\)
=>\(S_{CDE}=48\left(cm^2\right)\)