Một moto đi từ A đến B với vận tốc 60km/h. Lúc về người ấy đi chậm hơn lúc đi mỗi giờ 10 km nên thời gian về nhiều hơn thời gian đi là 24 phút. Tính quãng đường AB?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AB là x km (x>0)
Thời gian đi từ A đến B là: \(\dfrac{x}{12}\) giờ
Thời gian từ B về A là: \(\dfrac{x}{10}\) giờ
Do thời gian về nhiều hơn thời gian đi là 45 phút =3/4 giờ nên ta có pt:
\(\dfrac{x}{10}-\dfrac{x}{12}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x}{60}=\dfrac{3}{4}\)
\(\Leftrightarrow x=45\) (km)
Gọi độ dài quãng đường AB là x(km)(Điều kiện: x>0)
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{45}\left(h\right)\)
Thời gian người đó đi từ B về A là: \(\dfrac{x}{50}\left(h\right)\)
Theo đề, ta có phương trình: \(\dfrac{x}{45}-\dfrac{x}{50}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{10x}{450}-\dfrac{9x}{450}=\dfrac{180}{450}\)
\(\Leftrightarrow x=180\left(nhận\right)\)
Vậy: Độ dài quãng đường AB là 180km
Đổi \(45phút=\dfrac{3}{4}\left(h\right)\)
Gọi độ dài quãng đường AB là \(x\left(km,x>0\right)\)
Thì thời gian lúc đi từ A đến B là \(\dfrac{x}{40}\left(giờ\right)\)
Vận tốc lúc về là : \(40-10=30\) (km/h)
Thời gian lúc về là : \(\dfrac{x}{30}\left(h\right)\)
Vì thời gian lúc về nhiều hơn thời gian lúc đi \(\dfrac{3}{4}h\) nên ta có phương trình :
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow4x-3x=90\)
\(x=90\left(nhận\right)\)
Vậy quãng đường AB là 90 km
Gọi độ dài quãng đường AB là x
Thời gian đi là x/40(h)
Thời gian về là x/30(h)
Theo đề, ta có: x/30-x/40=3/4
hay x=90
30 phút = (1/2) giờ
Gọi quãng đường AB là x (km). Điều kiện x > 0.
Thời gian xe máy đi từ A đến B là x/30 (giờ).
Thời gian xe máy đi từ B về A là x/24 (giờ).
Ta có phương trình:
⇔ 5x - 4x = 60 ⇔ x = 60 (thỏa mãn điều kiện)
Vậy quãng đường AB là 60 km.
vận tốc ban đầu người đó là x (km/h) (x>0)
khi về vận tốc người đó là x+5 (km/h)
Thời gian khi đi, khi về lần lượt là: \(\dfrac{60}{x}\left(h\right);\dfrac{60}{x+5}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 1h, nên ta có:
\(\dfrac{60}{x}=\dfrac{60}{x+5}+1\\ \Leftrightarrow\dfrac{60\left(x+5\right)}{x\left(x+5\right)}=\dfrac{60x+x\left(x+5\right)}{x\left(x+5\right)}\\ \Leftrightarrow60x+300=60x+x^2+5x\\ \Leftrightarrow x^2+60x-60x+5x-300=0\\ \Leftrightarrow x^2+5x-300=0\\ \Leftrightarrow x^2-15x+20x-300=0\\ \Leftrightarrow x\left(x-15\right)+20\left(x-15\right)=0\\ \Leftrightarrow\left(x-15\right)\left(x+20\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-15=0\\x+20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\left(nhận\right)\\x=-20\left(loại\right)\end{matrix}\right.\)
Vậy: Vận tốc lúc đi của người ấy là 15(km/h)
Gọi Quãng đường AB là x ( x > 0, km )
Quãng đường khi về là x + 10 km
Thời gian người đó đi quãng đường AB là \(\frac{x}{25}\)giờ
Thời gian người đó đi quãng đường khi về là \(\frac{x+10}{30}\)giờ
Do thời gian về ít hơn thời gian đi là 20 phút = 1/3 giờ
nên ta có phương trình \(\frac{x}{25}-\frac{x+10}{30}=\frac{1}{3}\Leftrightarrow x=100\)
Vậy Quãng đường AB là 100 km
Gọi quãng đường AB là x(x>0)x(x>0)
Thời gian đi: x45x45
Thời gian về: x40x40
Đổi: 1010 phút=1616 giờ
Theo bài ra ta có phương trình:
x40−x45=16⇔270x−240x=1800⇔30x=1800⇔x=60 (thoả mãn)x40−x45=16⇔270x−240x=1800⇔30x=1800⇔x=60 (thoả mãn)
Vậy quãng đường dài: 60 km
Gọi quãng đường AB là x ( x > 0, km )
Thời gian người đó đi xe máy từ A -> B là : \(\frac{x}{45}\)giờ
Thời gian người đó đi từ B -> A là : \(\frac{x}{40}\)giờ
vì thời gian về nhiều hơn đi là 10 phút = \(\frac{1}{6}\)giờ
nên ta có phương trình : \(\frac{x}{40}-\frac{x}{45}=\frac{1}{6}\Leftrightarrow x=60\)
Vậy quãng đường AB là 60 km
5p = \(\frac{1}{2}\)h
Gọi quãng đường AB là x : (km) ( x> 0)
Thời gian xe đi từ A - B = \(\frac{x}{60}\)(h)
Thời gian xe đi từ B - A = \(\frac{x}{50}\)(h)
Theo đề , ta có pt :
\(\frac{x}{50}\)- \(\frac{x}{60}\)= \(\frac{1}{12}\)
6x - 5x =25
x = 25
Đs
s/50 - s/60 = 24' = 2/5 => s = 120km