K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét ΔBAC có BD là phân giác

nen AD/BA=DC/BC

=>AD/3=DC/5=12/8=1,5

=>AD=4,5cm; DC=7,5cm

d: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

=>ΔAID cân tại A

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

d: góc ADI=90 độ-góc ABD

góc AID=góc BIH=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADI=góc AID

=>ΔAID cân tại A

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc ABH chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có

góc HBI=góc ABD

=>ΔBHI đồng dạng với ΔBAD

=>BH/BA=BI/BD

=>BH*BD=BA*BI

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

c: AD là phân giác

=>AD/DC=BA/BC=AH/AC

=>AD*AC=AH*DC

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

b: BD là phân giác

=>BC/AB=DC/DA

Xét ΔHAC có DE//AH

nên EC/EH=DC/DA

=>BC/AB=EC/EH

=>AB/EH=BC/EC

c: AC=căn 20^2-12^2=16cm

DA/AB=DC/BC

=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2

=>DA=6cm; DC=10cm

S BAC=1/2*12*16=96cm2

S BAD=1/2*6*12=36cm2

=>S BDC=60cm2

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB