Chứng minh rằng: 1/4^2 + 1/6^2 + 1/8^2 +...+ 1/(2n)^2 <1/4 ( n thuộc N, n lớn hơn hoặc bằng 2 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2^2(1/2^2+1/3^2+...+1/n^2)<1/4[(1/(1.2)+1/(2.3)+...+1/(n-1).n]=1/4(1-1/n) {n lon hon hoac bang 2}. Suy ra 1-1/n<0. Suy ra A<1/4
a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)
Vậy \(N< \frac{1}{4}\)
b) \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)
\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)
\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)
Vậy \(P< 1\)
\(\frac{1}{2^2}\)\(+\)\(\frac{1}{4^2}\)\(+\)\(\frac{1}{6^2}\)\(+\)..... \(+\)\(\frac{1}{\left(2n\right)^2}\)
= \(\frac{1}{4}\)\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\right)< \)\(\frac{1}{4}\)\(\left(1+\frac{1}{1.2} +\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)
= \(\frac{1}{4}\)\(\left(1+1-\frac{1}{n}\right)< \frac{1}{2}\)
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
A=1/4^2+1/6^2+...+1/(2n)^2
=1/4(1/2^2+1/3^2+...+1/n^2)
=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)
=>A<1/4(1-1/n)<1/4