K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có

góc EHB=góc DHC

=>ΔHEB đồng dạng với ΔHDC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc DEC=góc DBC

c: ΔEBC vuông tại E

mà EO là trung tuyến

nên EO=BC/2

ΔDBC vuông tại D

mà DO là trung tuyến

nên DO=BC/2=EO

=>ΔDOE cân tại O

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)

17 tháng 5 2023

mình cần gâps huhu

 

16 tháng 5 2017

a) Có góc A chung và 2 góc vuông => ĐPCM

b) Xét EHB và DHC có:

2 góc vuông và 2 góc đối đỉnh  EHB và DHC

=> EHB đồng dạng với DHC

=>BH/CH=EH/DH

=>BH.DH=EH.CH

c)Từ câu a ta suy ra được tỉ số : AB/AC=AD/AE

và có góc A chung .

Từ đó suy ra: ADE đồng dạng với ABC

=> góc ADE= góc ABC

d) Ta có IO là đường trung bình ( tự chứng minh )

=> IO//AH => AHM đồng dạng với IOM

Tỉ số cạnh = AM/IM =2 ( do là đường trung bình )

Tỉ số diện tích của AHM so với IOM là 22=4

Vậy SAHM=4.SIOM

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc DAB chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng vơi ΔABC

b: Xet ΔHEB vuông tại E và ΔHDC vuông tại D co

góc EHB=góc DHC

=>ΔHEB đồng dạng vơi ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

Xét tứ giác BHCK co

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>H,M,K thẳng hàng

ΔAED đồg dạng với ΔACB

=>góc AED=góc ACB

d: Xét ΔBEC vuông tại E và ΔBOA vuông tại O có

góc EBC chung

=>ΔBEC đồng dạng với ΔBOA

=>BE/BO=BC/BA

=>BE*BA=BO*BC

Xét ΔCDB vuông tại D và ΔCOA vuông tại O có

góc OCA chung

=>ΔCDB đồng dạng với ΔCOA

=>CD/CO=CB/CA

=>CO*CB=CD*CA

=>BE*BA+CD*CA=BC^2

23 tháng 5 2017

Hình (tự vẽ)

a) Xét \(\Delta ABDva\Delta ACE\):

\(\widehat{A}\left(chung\right)\)

\(\widehat{E}=\widehat{D}\left(=90'\right)\)

\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)

\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)

b)xét \(\Delta ADEva\Delta ABC\)

\(\widehat{A}\left(chung\right)\)

\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)

c)Lưu Ý! Đề phải là DE cắt CB tại I

CM:

\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)

\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)

\(=>\widehat{IEB}=\widehat{ACB}\)

Lại có góc I chung

\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)

d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)

Mà OC=OB(gt)

\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)

c: Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hbh

=>M là trung điểm của HK

=>H,M,K thẳng hàng

d: BACK là hình thoi

=>M là trung điểm của AK và AK vuông góc BC 

=>A,H,M thẳng hàng

=>ΔABC cân tại A

=>AB=AC

 

3 tháng 6 2023

tham khảo
a.Ta có BK//CH(⊥AB),CK//BH(⊥AC)BK//CH(⊥AB),CK//BH(⊥AC)

→BHCK→BHCK là hình bình hành

b.Vì BHCKBHCK là hình bình hành

→HK∩BC→HK∩BC tại trung điểm mỗi đường

Do MM là trung điểm BCBC

→M→M là trung điểm HKHK

→H,M,K→H,M,K thẳng hàng

c.Ta có O,MO,M là trung điểm AK,HKAK,HK

→OM→OM là đường trung bình ΔAHKΔAHK

→OM//AH→OM//AH

Do BD∩CE=H→HBD∩CE=H→H là trực tâm ΔABC→AH⊥BCΔABC→AH⊥BC

→OM⊥BC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC

=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

 

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;