cho tam giác ABC. Hai đường cao BD và CE. gọi M là trung tuyến của BC
chứng minh ME là trung trực của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm
Nếu c/m được DM=1/2(BC) => BD=BC => vô lý vì trong tam giác vuông BCD có cạnh huyền BC = cạnh góc vuông BD à? => xem lại đề bài
Tham khảo đề bài và bài làm tại link:
Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
. xét tam giác ABD và tam giác ACE có
. A là góc chung .
. góc E = góc D = 90 độ (gt)
.AB=AC(gt)
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b/
Ta có : góc B = góc C ( tam giác ABC cân )
Mà góc B = B1 + B2
C= C1 + C2
Ta lại có : B1 = C1( tam giác ABD = tam giác ACE) ; góc B= góc C
=> góc B2 = C2
=> tam giác BHC cân tại B
c/
ta có : AB= AC ( tam giác ABC cân )
=> A thuộc đường trung trực của BC (1)
Ta lại có : HB=HC (tam giác BHC cân )
=> H thuộc đường trung trực của BC (2)
từ (1) và (2) suy ra : AH là đường trung trực của BC .
( Đường trung trực là đường đi qua trung điểm và cách đều 2 đầu mút của điểm đó )
CÂU D MÌNH KHÔNG BIẾT !!! XIN LỖI NHA .
a). Xét tam giác ABD và tam giác ACE có
. A là góc chung .
. Góc E = góc D = 90 độ (gt)
.AB=AC(gt)
=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn )
=> BD = CE ( 2 cạnh tương ứng )
b) Ta có : góc B = góc C ( tam giác ABC cân )
Mà góc B = B1 + B2
C= C1 + C2
Ta lại có : B1 = C1( tam giác ABD = tam giác ACE) ; góc B= góc C
=> góc B2 = C2
=> tam giác BHC cân tại B
c) Ta có : AB= AC ( tam giác ABC cân )
=> A thuộc đường trung trực của BC (1)
Ta lại có : HB=HC (tam giác BHC cân )
=> H thuộc đường trung trực của BC (2)
Từ (1) và (2) suy ra : AH là đường trung trực của BC .
( Đường trung trực là đường đi qua trung điểm và cách đều 2 đầu mút của điểm đó )
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
Em sai đề. Tham khảo đề và bài làm tại link: Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD