Cho ∆MNP cân tại M, kẻ đường trung tuyến MH.
a) Chứng minh: ∆MNH = ∆MPH.
b) Chứng minh MH là đường trung trực của NP.
c) Trên tia đối của tia HM lấy điểm K sa cho HK = HM. Chứng minh MN // PK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình
`a)`Xét tam giác MNP cân có:MI là trung tuyến
`=>` MI là đường cao
`=>MI bot NP`
`b)` Xét tam giác vuông MIQ và tam giác vuông MIK có:
`MI` chung
`hat{NMI}=hat{PMI}`
`=>DeltaMIQ=DeltaMIK(ch-gn)`
`=>IQ=IK(1)`
`DeltaMIQ=DeltaMIK(ch-gn)`
`=>MQ=MK(2)`
`(1)(2)=>IM` là trung trực QK
a) Xét ΔMHC và ΔMKB có
MH=MK(gt)
\(\widehat{CMH}=\widehat{BMK}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMHC=ΔMKB(c-g-c)
b) Ta có: HM⊥AC(gt)
AB⊥AC(gt)
Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)
a: Xét ΔMHC và ΔMKB có
MH=MK
góc HMC=góc KMB
MC=MB
=>ΔMHC=ΔMKB
=>góc MKB=góc MHC=90 độ
b: Xét tứ giác AHBK có
AH//BK
HK//AB
=>AHBK là hbh
=>AH=KB
c: ΔABC vuông tại A có AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
a: Xét ΔMHC và ΔMKB có
MH=MK
góc HMC=góc KMB
MC=MB
=>ΔMHC=ΔMKB
b: Xét tứ giác AHKB có
KB//AH
KB=AH
=>AHKB là hbhh
=>HK//AB và HK=AB
c: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
a/ Xét tam giác AHB và tam giác AHC
Góc AHB=AHC=90 độ
AB=AC(tam giác ABC cân tại A)
Góc B=C (tam giác ABC cân tại A)
=> Tam giác ABH=ACH(ch-gn)
mk nha
a: BC=căn 6^2+8^2=10cm
b: Xét ΔMHC và ΔMKB có
MH=MK
góc HMC=góc KMB
MC=MB
=>ΔMHC=ΔMKB
c: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>MH là phân giác của góc CMA
d:
Xét ΔCAB có
M là trung điểm của CB
MH//AB
=>H là trung điểm của AC
Xét ΔCAB có
AM,BH là trung tuyến
AM cắt BH tại G
=>G là trọng tâm
=>C,G,I thẳng hàng
a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: ΔMHN=ΔMHP
=>HN=HP
=>H là trung điểm của NP
c: ΔMNH=ΔMPH
=>góc NMH=góc PMH
=>MH là phân giác của góc NMP
a,xét 2 tam giác vuông MNH và NPH có:
mn=mp(gt)
mk là canh chung
\(\Rightarrow\)tam giác MNH=tam giác NPH ( cạnh huyền-cạnh góc vuông)
b,Vì tam giác MNP là tam giác cân nên:
\(\Rightarrow\) đường trung tuyến của nó cũng là đường trung trực
mà tia MK là đường trung tuyến của tam giác MNP
\(\Rightarrow\)MH là đường trung trực của PN
còn phần c thì bạn nên xem lại đề nhé
mình cảm ơn ạ , phần c chắc đề sai á