Cho A(x)=ax3+4x3-4x+8;B(x)=x3-4bx+c-3( trong đó a, b, c là các hằng số). Xác định các hệ số a,b,c để A(x)=B(x).
Mình cần gấp nha mấy bạn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Ta có A(x) + B(x) = (3x4 - 4x3+ 5x2 - 3-4x) + (-3x4+ 4x3 - 5x2+ 6 + 2x) = -2x + 3.
Ta có :
\(3x^4-4x^3+5x^2-3-4x-3x^4+4x^3-5x^2+6+2x\)
\(=3-2x\)hay \(-2x+3\)
Suy ra : Ta chọn B
Ta sử dụng phương pháp chia đa thức bằng phép chia đa thức tổng quát để giải bài toán này. Theo đó, ta có:
2x^4 + 4x³-3x² - 4x + 1: (x² - 1)
= 2x² + 4x + 1 - (x² + 4x + 1)/(x² - 1)
= 2x² + 4x + 1 - (x² - 1 + 4x+2)/(x² -
1)
= 2x² + 4x + 1 - (x² + 4x + 2)/(x² - 1) +
1/(x² - 1) = 2x² + 4x + 1 - (x² + 4x + 2)/(x² - 1) +
1/[(x+1)(x-1)]
Vậy kết quả là:
A(x) (x²-1)=2x² + 4x + 1 - (x² + 4x +
2)/(x² - 1) + 1/[(x+1)(x-1)]
Ta có: P(x) - Q(x) + R(x)
=(-5x3 + 7x2 - x + 8) - (4x3 - 7x + 3) - (6x3 + 4x)
=-5x3 + 7x2 - x + 8 - 4x3 + 7x - 3 + 6x3 + 4x
= -3x3 + 7x2 + 10x + 5. Chọn D
a: \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=3x^4-4x^3+5x^2-4x-3-3x^4+4x^3-5x^2+2x+6\)
=-2x+3
b: Đặt C(x)=0
=>-2x+3=0
hay x=3/2
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b) x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
Bài 2
P(x) + Q(x) = x3 – 6x + 2 + 2x2 - 4x3 + x - 5 = - 3x3 + 2x2 – 5x - 3
P(x) - Q(x) = x3 – 6x + 2 - 2x2 + 4x3 - x + 5 = 5x3 − 2x2 − 7x+7
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)