K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2023

A = \(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.....+ \(\dfrac{1}{50^2}\)

A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+......+\(\dfrac{1}{50.50}\)

      1 = 1

 \(\dfrac{1}{2.2}\)  < \(\dfrac{1}{1.2}\)

  \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

..................

\(\dfrac{1}{50.50}\) < \(\dfrac{1}{49.50}\)

Cộng vế với vế với ta có:

A = \(1+\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\)+....+ \(\dfrac{1}{50.50}\) < 1 + \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+....+\(\dfrac{1}{49.50}\)

A < 1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+......+ \(\dfrac{1}{49}\)\(\dfrac{1}{50}\)

A < 2 - \(\dfrac{1}{50}\) < 2 ( đpcm)

 

1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50

=1/1-1/2+1/2-1/3+...+1/49-1/50<1

=>S<1+1=2

13 tháng 5 2017

Ta có :

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+......................+\dfrac{1}{50^2}\)

Ta thấy :

\(\dfrac{1}{1^2}=1\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

............................

\(\dfrac{1}{50^2}< \dfrac{1}{49.50}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....................+\dfrac{1}{49.50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< 1+1-\dfrac{1}{50}\)

\(\Rightarrow A< 2-\dfrac{1}{50}< 2\)

\(\Rightarrow A< 2\rightarrowđpcm\)

10 tháng 11 2023

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)

\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{9}{10}\)

\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))

10 tháng 11 2023

132=13⋅3<12⋅3

142=14⋅4<13⋅4

...

192=19⋅9<18⋅9

1102=110⋅10<19⋅10

⇒�=122+132+142+...+1102<11⋅2+12⋅3+13⋅4+...+19⋅10

⇒�<1−12+12−13+...+19−110

⇒�<1−110

⇒�<910

⇒�<1 (vì: 910<1)

 
5 tháng 5 2021

Dễ quá

6 tháng 3 2021

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2019^2}>\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{2019\cdot2020}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{2019}-\dfrac{1}{2020}=\dfrac{1}{5}-\dfrac{1}{2020}=\dfrac{404-1}{2020}=\dfrac{403}{2020}>\dfrac{40}{2020}=\dfrac{20}{101}\left(1\right)\) \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2019^2}< \dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+...+\dfrac{1}{2018\cdot2019}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{2018}-\dfrac{1}{2019}=\dfrac{1}{4}-\dfrac{1}{2019}=\dfrac{2019-4}{4\cdot2019}=\dfrac{2015}{4\cdot2019}< \dfrac{2019}{4\cdot2019}=\dfrac{1}{4}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{20}{101}< A< \dfrac{1}{4}\)

24 tháng 4 2017

Ta có:

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(=1+\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Đặt \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\) ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(.....................\)

\(\dfrac{1}{50^2}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

Cộng các vế trên với nhau ta được:

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow B< 1-\dfrac{1}{50}< 1\)

\(\Rightarrow1+B< 1+1=2\) Hay \(A< 2\)

Vậy \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}< 2\) (Đpcm)

24 tháng 4 2017

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ =1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\\ \Rightarrow A< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=1+1-\dfrac{1}{50}=2-\dfrac{1}{50}< 2\)

28 tháng 2 2023

Câu b hướng làm đó là tách con 1/3 và 1/2 ra thành 50 phân số giống nhau. E tách 1/3=50/150 rồi so sánh 1/101, 1/102,...,1/149 với 1/150. Còn vế sau 1/2=50/100 tách tương tự rồi so sánh thôi

AH
Akai Haruma
Giáo viên
28 tháng 2 2023

2a.

$\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
$=1-\frac{1}{50}< 1$ (đpcm)