Một người đi ô tô dự định đi từ A đến B với vận tốc 40km/h. Nhưng khi đi được 15 phút với vận tốc ấy ô tô tăng vận tốc thêm 10km/h. Vì vậy ô tô đến B sớm hơn thời gian dự định 21 phút. Tính quãng đường AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Gọi x là quãng đường AB ( km )
Ta có \(\frac{x}{40}\)là thời gian dự định .
Đổi 18 phút = \(\frac{18}{60}h=\frac{3}{10}\left(h\right)\)
\(\frac{1}{2}\)quãng đường là \(\frac{x}{2}\), thời gian đi \(\frac{1}{2}\)quãng đường là ( v = 40 )
\(\frac{x}{2.40}=\frac{x}{80}\)
\(\frac{1}{2}\)quãng đường đi với vận tốc 50 km/h .thời gian là :
\(\frac{x}{2.50}=\frac{x}{100}\)
Ta có thời gian đi từ A -> B là : \(\frac{x}{80}+\frac{x}{100}=\frac{9.x}{400}\)
Mà theo đề bài ta có :
\(\frac{x}{40}-\frac{3}{10}=\frac{9.x}{400}\)
<=> \(\frac{-9.x}{400}+\frac{x}{40}=\frac{3}{10}\)
<=> \(\frac{1}{400}.x=\frac{3}{10}\)
<=> \(x=400.\frac{3}{10}\)
<=> x = 120
Vậy quãng đường AB dài 120 km
Thời gian khi tăng tốc lên 50km/h sẽ ngắn hơn thời gian dự tính là 18ph (0,3h).
=> thời gian dự tính là: 50x0,3/(54-40)=15:10=1,5 giờ
Độ dài quãng đường AB là: 40x1,5=60km
Đs: 60km
Gọi độ dài AB là x
Thời gian dự kiến là x/40
Thời gian thực tế là 1/4+(x-10)/50
Theo đề, ta có:
\(\dfrac{x}{40}-\dfrac{1}{4}-\dfrac{x-10}{50}=\dfrac{21}{60}=\dfrac{7}{20}\)
=>\(\dfrac{1}{40}x-\dfrac{1}{4}-\dfrac{1}{50}x+\dfrac{1}{5}=\dfrac{7}{20}\)
=>x/200=2/5
=>x=80