Cho m, ,n, p là 3 cạnh của một tam giác. CMR: m2 + n2 + p2 < 2( mn+np+mp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
a: Xét ΔMND và ΔMED có
MN=ME
\(\widehat{NMD}=\widehat{EMD}\)
MD chung
Do đó: ΔMND=ΔMED
b: Xét ΔMNP có \(\widehat{M}=90^0\)
nên ΔMNP vuông tại M
xét tam giác MIP ta có: IP < IM+ MP ( bất đẳng thức trong tam giác)
xét tam giác NIP ta có: IP < IN+ NP ( bất đẳng thức trong tam giác)
mà IM=IN (gt) =>2IP=MP+NP
Xét tam giác MIP ta có : IP < IM + MP ( bất dẳng thức tam giác )
Xét tam giác NIP có : IP < IN + NP ( bất đẳng thức tam giác )
Mà IM = IN ( gt )
Suy ra 2IP < MP < NP
m<n+p(bđt \(\Delta\) )=> m2<m(n+p),chứng minh tương tự rồi cộng lại
Vì m;n;p là 3 cạnh của 1 tam giác nên ta có : \(\hept{\begin{cases}m+n>p\\m+p>n\\n+p>m\end{cases}}\) (bđt Tam Giác)
\(\Rightarrow\hept{\begin{cases}p\left(m+n\right)>p^2\\n\left(m+p\right)>n^2\\m\left(n+p\right)>m^2\end{cases}\Rightarrow\hept{\begin{cases}mp+np>p^2\\mn+np>n^2\\mn+mp>m^2\end{cases}}}\)
\(\Rightarrow2\left(mn+np+mp\right)>m^2+n^2+p^2\)
Hay \(m^2+n^2+p^2< 2\left(mn+np+mp\right)\) (ĐFCM)