Cho tam giác ABC vuông tại A,đường phân giác BD(D thuộc AC),kẻ DK vuông góc với BC(K thuộc BC)
a/ Vẽ hình,ghi giả thiết,kết luận
b/ CMR: BD là đường trung trực đoạn thẳng AK
c/ DK cắt AB tại E, CMR: CE vuông góc với AB
P/s:Vẽ hình,ghi giả thiết,kết luận dùm mình nha.Cám ơn các bạn rất nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ban tu ve hinh
a) +) tam giac ABE co : ABE+BAE+BEA=180( dinh li tong 3 goc cua 1 tam giac)
ABE+BAE+90=180
ABE+BAE =180-90=90(1)
+) tam giac EBK co : EBK+KEB+BKE=180(dinh li tong 3 goc cua 1 tam giac )
EBK+90+BKE=180
EBK+BKE=90(2)
Vi ABE=EBK(BD la phan giac cua ABC) nen tu (1) va (2) suy ra BAE=BKE
suy ra tam giac BAK can tai B
b)Vi tam giac ABK can tai B nen AB=BK
xet tam giac ABD va tam giac KBD CO :
BD chung
ABD=KBD ( BD la phan giac cua ABC)
AB=AK(cmt)
NEN tam giac ABD= tam giaac KBD (c-g-c) nen AB=BK( 2 canh tuong ung ) ;BAD=BKD(2 goc tuong ung ) ma BAD=90 NEN DKB=90
SUY RA DK vuong goc voi BC
CAC GOC KO CO KI HIEU MU GOC BAN TU THEM VAO
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBMN có
NA là trung tuýen
NI=2/3NA
=>I là trọng tâm
=>MI đi qua trung điểm của BN
3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)
a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))
Cạnh huyền AE chung
=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)
b/ Ta có \(\Delta ACE\)= \(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)
Gọi M là giao điểm của AE và CK.
\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)
\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))
Cạnh AM chung
=> \(\Delta ACM\)= \(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)
và\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)
Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)
=> 2\(\widehat{AMC}\)= 180o
=> \(\widehat{AMC}\)= 90o
=> AM \(\perp\)CK (2)
Từ (1) và (2) => AE là đường trung trực của CK (đpcm)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD la trung trực của AE
c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co
BE=BA
góc EBF chung
=>ΔBEF=ΔBAC
=>BF=BC
Xét ΔFCB có BA/BF=BE/BC
nên AE//CF